Type decomposition of ideals in reduced groupoid C^* -algebras

Jiawen Zhang (章嘉雯)

Fudan University

joint work with Kang Li (李康)

Monthly Global Diffeology Seminar

2025.06.13

A C^* -algebra is a *-subalgebra of $\mathfrak{B}(\mathcal{H})$ which is closed under the norm topology. Here \mathcal{H} is a Hilbert space and $\mathfrak{B}(\mathcal{H})$ is the set of all linear continuous operators on \mathcal{H} .

A C^* -algebra is a *-subalgebra of $\mathfrak{B}(\mathcal{H})$ which is closed under the norm topology. Here \mathcal{H} is a Hilbert space and $\mathfrak{B}(\mathcal{H})$ is the set of all linear continuous operators on \mathcal{H} .

• There is an abstract definition of C^* -algebra, *i.e.*, a C^* -algebra is a *-algebra \mathfrak{A} over \mathbb{C} together with a norm $\|\cdot\|$ satisfying: $\forall a, b \in \mathfrak{A}$, we have

- $\|ab\| \le \|a\| \cdot \|b\|;$
- **2** $||a^*a|| = ||a||^2$ (*C**-identity);
- $\textcircled{0} \ \mathfrak{A} \text{ is complete under the norm } \|\cdot\|.$

This is equivalent to the above by the Gelfand-Naimark-Segal construction.

A C^* -algebra is a *-subalgebra of $\mathfrak{B}(\mathcal{H})$ which is closed under the norm topology. Here \mathcal{H} is a Hilbert space and $\mathfrak{B}(\mathcal{H})$ is the set of all linear continuous operators on \mathcal{H} .

• There is an abstract definition of C^* -algebra, *i.e.*, a C^* -algebra is a *-algebra \mathfrak{A} over \mathbb{C} together with a norm $\|\cdot\|$ satisfying: $\forall a, b \in \mathfrak{A}$, we have

- $\|ab\| \le \|a\| \cdot \|b\|;$
- **2** $||a^*a|| = ||a||^2$ (*C**-identity);
- **③** \mathfrak{A} is complete under the norm $\|\cdot\|$.

This is equivalent to the above by the Gelfand-Naimark-Segal construction.

 \blacktriangleright For a locally compact Hausdorff space X, then

 $C_0(X) = \{ f \in C(X) : f \text{ vanishes at infinity} \}$

is a $C^{\ast}\mbox{-algebra}.$ Conversely, any commutative $C^{\ast}\mbox{-algebra}$ has this form.

 \bullet Let G be a discrete group. $C_c(G)$ is a *-algebra: For $f,g\in C_c(G)$ and $\gamma\in\mathcal{G},$ define

$$(f * g)(\gamma) := \sum_{\alpha \in G} f(\gamma \alpha^{-1})g(\alpha),$$
$$f^*(\gamma) := \overline{f(\gamma^{-1})}.$$

• Let G be a discrete group. $C_c(G)$ is a *-algebra: For $f,g\in C_c(G)$ and $\gamma\in\mathcal{G},$ define

$$(f * g)(\gamma) := \sum_{\alpha \in G} f(\gamma \alpha^{-1})g(\alpha),$$
$$f^*(\gamma) := \overline{f(\gamma^{-1})}.$$

 $\bullet\,$ Consider the left regular representation $\lambda: C_c(G) \to \mathfrak{B}(\ell^2(G))$ by

$$(\lambda(f)\xi)(\gamma) := \sum_{\alpha \in G} f(\gamma \alpha^{-1})\xi(\alpha), \quad \text{where } f \in C_c(G) \text{ and } \xi \in \ell^2(G).$$

• Let G be a discrete group. $C_c(G)$ is a *-algebra: For $f,g\in C_c(G)$ and $\gamma\in\mathcal{G},$ define

$$(f * g)(\gamma) := \sum_{\alpha \in G} f(\gamma \alpha^{-1})g(\alpha),$$
$$f^*(\gamma) := \overline{f(\gamma^{-1})}.$$

• Consider the left regular representation $\lambda: C_c(G) \to \mathfrak{B}(\ell^2(G))$ by

$$\big(\lambda(f)\xi\big)(\gamma):=\sum_{\alpha\in G}f(\gamma\alpha^{-1})\xi(\alpha),\quad\text{where }f\in C_c(G)\text{ and }\xi\in\ell^2(G).$$

• The reduced norm on $C_c(G)$ is $||f||_r := ||\lambda(f)||$. The reduced group C^* -algebra $C^*_r(G)$ is the completion of the *-algebra $C_c(G)$ w.r.t. $|| \cdot ||_r$.

• Let G be a discrete group. $C_c(G)$ is a *-algebra: For $f,g\in C_c(G)$ and $\gamma\in\mathcal{G},$ define

$$(f * g)(\gamma) := \sum_{\alpha \in G} f(\gamma \alpha^{-1})g(\alpha),$$
$$f^*(\gamma) := \overline{f(\gamma^{-1})}.$$

• Consider the left regular representation $\lambda: C_c(G) \to \mathfrak{B}(\ell^2(G))$ by

$$\big(\lambda(f)\xi\big)(\gamma):=\sum_{\alpha\in G}f(\gamma\alpha^{-1})\xi(\alpha),\quad\text{where }f\in C_c(G)\text{ and }\xi\in\ell^2(G).$$

• The reduced norm on $C_c(G)$ is $||f||_r := ||\lambda(f)||$. The reduced group C^* -algebra $C^*_r(G)$ is the completion of the *-algebra $C_c(G)$ w.r.t. $|| \cdot ||_r$.

Example

For $G = \mathbb{Z}$, then $C_r^*(G) = C(\mathbb{T})$ by the Fourier transformation.

► Groupoids provide a framework encompassing both groups and topological spaces. They arise naturally in a variety of research areas such as topological dynamics, topology and geometry, geometric group theory and operator algebras, building bridges between all these areas of mathematics.

► Groupoids provide a framework encompassing both groups and topological spaces. They arise naturally in a variety of research areas such as topological dynamics, topology and geometry, geometric group theory and operator algebras, building bridges between all these areas of mathematics.

▶ In 1980s, Renault initiated the study of C*-algebras associated to groupoids. Since then, groupoids gave rise to an extraordinarily rich class of operator algebras. ► Groupoids provide a framework encompassing both groups and topological spaces. They arise naturally in a variety of research areas such as topological dynamics, topology and geometry, geometric group theory and operator algebras, building bridges between all these areas of mathematics.

▶ In 1980s, Renault initiated the study of C*-algebras associated to groupoids. Since then, groupoids gave rise to an extraordinarily rich class of operator algebras.

▶ Recently in 2020, X.Lin proved that every classifiable C*-algebra admits a (twisted) groupoid model.

• A groupoid consists of a set \mathcal{G} , a subset $\mathcal{G}^{(0)}$ called the **unit space**, two maps $s, r : \mathcal{G} \to \mathcal{G}^{(0)}$ called the **source** and **range** maps, respectively, a **composition law**:

$$\mathcal{G}^{(2)} := \{ (\gamma_1, \gamma_2) \in \mathcal{G} \times \mathcal{G} : s(\gamma_1) = r(\gamma_2) \} \ni (\gamma_1, \gamma_2) \mapsto \gamma_1 \gamma_2 \in \mathcal{G},$$

and an **inverse** map $\gamma \mapsto \gamma^{-1}$ satisfying a couple of axioms.

• A groupoid consists of a set \mathcal{G} , a subset $\mathcal{G}^{(0)}$ called the **unit space**, two maps $s, r : \mathcal{G} \to \mathcal{G}^{(0)}$ called the **source** and **range** maps, respectively, a **composition law**:

 $\mathcal{G}^{(2)} := \{ (\gamma_1, \gamma_2) \in \mathcal{G} \times \mathcal{G} : s(\gamma_1) = r(\gamma_2) \} \ni (\gamma_1, \gamma_2) \mapsto \gamma_1 \gamma_2 \in \mathcal{G},$

and an **inverse** map $\gamma \mapsto \gamma^{-1}$ satisfying a couple of axioms.

• A locally compact Hausdorff groupoid is a groupoid equipped with a locally compact and Hausdorff topology such that structure maps are continuous. It is called **étale** if r is a local homeomorphism.

• A groupoid consists of a set \mathcal{G} , a subset $\mathcal{G}^{(0)}$ called the **unit space**, two maps $s, r : \mathcal{G} \to \mathcal{G}^{(0)}$ called the **source** and **range** maps, respectively, a **composition law**:

$$\mathcal{G}^{(2)} := \{ (\gamma_1, \gamma_2) \in \mathcal{G} \times \mathcal{G} : s(\gamma_1) = r(\gamma_2) \} \ni (\gamma_1, \gamma_2) \mapsto \gamma_1 \gamma_2 \in \mathcal{G},$$

and an **inverse** map $\gamma \mapsto \gamma^{-1}$ satisfying a couple of axioms.

• A locally compact Hausdorff groupoid is a groupoid equipped with a locally compact and Hausdorff topology such that structure maps are continuous. It is called **étale** if *r* is a local homeomorphism.

• For $U \subseteq \mathcal{G}^{(0)}$, denote $\mathcal{G}_U := s^{-1}(U)$. Étaleness \Rightarrow each $\mathcal{G}_x := \mathcal{G}_{\{x\}}$ is discrete.

Reduced groupoid C^* -algebras

- Let \mathcal{G} be a locally compact, Hausdorff and étale groupoid.
- $C_c(\mathcal{G})$ is a *-algebra: For $f,g\in C_c(\mathcal{G})$ and $\gamma\in\mathcal{G}$, define

$$(f * g)(\gamma) := \sum_{\alpha \in \mathcal{G}_{s(\gamma)}} f(\gamma \alpha^{-1})g(\alpha),$$
$$f^*(\gamma) := \overline{f(\gamma^{-1})}.$$

Reduced groupoid C*-algebras

- Let \mathcal{G} be a locally compact, Hausdorff and étale groupoid.
- $C_c(\mathcal{G})$ is a *-algebra: For $f,g \in C_c(\mathcal{G})$ and $\gamma \in \mathcal{G}$, define

$$\begin{split} (f*g)(\gamma) &:= \sum_{\alpha \in \mathcal{G}_{s(\gamma)}} f(\gamma \alpha^{-1}) g(\alpha), \\ f^*(\gamma) &:= \overline{f(\gamma^{-1})}. \end{split}$$

• For $x \in \mathcal{G}^{(0)}$, consider $\lambda_x : C_c(\mathcal{G}) \to \mathfrak{B}(\ell^2(\mathcal{G}_x))$ defined by $(\lambda_x(f)\xi)(\gamma) := \sum_{\alpha \in \mathcal{G}_x} f(\gamma \alpha^{-1})\xi(\alpha), \text{ where } f \in C_c(\mathcal{G}) \text{ and } \xi \in \ell^2(\mathcal{G}_x).$

Reduced groupoid C*-algebras

- \bullet Let ${\mathcal G}$ be a locally compact, Hausdorff and étale groupoid.
- $C_c(\mathcal{G})$ is a *-algebra: For $f,g\in C_c(\mathcal{G})$ and $\gamma\in\mathcal{G}$, define

$$\begin{split} (f*g)(\gamma) &:= \sum_{\alpha \in \mathcal{G}_{s(\gamma)}} f(\gamma \alpha^{-1}) g(\alpha), \\ f^*(\gamma) &:= \overline{f(\gamma^{-1})}. \end{split}$$

• For $x \in \mathcal{G}^{(0)}$, consider $\lambda_x : C_c(\mathcal{G}) \to \mathfrak{B}(\ell^2(\mathcal{G}_x))$ defined by $(\lambda_x(f)\xi)(\gamma) := \sum_{\alpha \in \mathcal{G}_x} f(\gamma \alpha^{-1})\xi(\alpha), \text{ where } f \in C_c(\mathcal{G}) \text{ and } \xi \in \ell^2(\mathcal{G}_x).$

• The reduced norm on $C_c(\mathcal{G})$ is $||f||_r := \sup_{x \in \mathcal{G}^{(0)}} ||\lambda_x(f)||$. The reduced groupoid C^* -algebra $C_r^*(\mathcal{G})$ is the completion of the *-algebra $C_c(\mathcal{G})$ with respect to the reduced norm $||\cdot||_r$.

Example

A group G is a groupoid with unit space $\{1_G\}$. A set X is a groupoid with unit space X, r(x) = s(x) = x. • $C_r^*(G)$ is the usual reduced group C^* -algebra.

Example

A group G is a groupoid with unit space $\{1_G\}$. A set X is a groupoid with unit space X, r(x) = s(x) = x. • $C_r^*(G)$ is the usual reduced group C^* -algebra.

Example (Pair groupoid)

For a set X, the product $X \times X$ is a groupoid with unit space X, s(x, y) = y, r(x, y) = x, $(x, y) \cdot (y, z) = (x, z)$ and $(x, y)^{-1} = (y, x)$. • $C_r^*(X \times X)$ is the algebra of compact operators on $\ell^2(X)$ if X is discrete.

Example

A group G is a groupoid with unit space $\{1_G\}$. A set X is a groupoid with unit space X, r(x) = s(x) = x. • $C_r^*(G)$ is the usual reduced group C^* -algebra.

Example (Pair groupoid)

For a set X, the product $X \times X$ is a groupoid with unit space X, s(x, y) = y, r(x, y) = x, $(x, y) \cdot (y, z) = (x, z)$ and $(x, y)^{-1} = (y, x)$. • $C_r^*(X \times X)$ is the algebra of compact operators on $\ell^2(X)$ if X is discrete.

Example (Transformation groupoid)

Let Γ be a group acting on a set X. The product $X \times \Gamma$ is a groupoid with unit space X, $s(x, \gamma) = \gamma^{-1}x$, $r(x, \gamma) = x$, $(x, \gamma)^{-1} = (\gamma^{-1}x, \gamma^{-1})$ and $(\gamma x, \gamma) \cdot (x, \gamma') = (\gamma x, \gamma \gamma')$. Denote this groupoid by $X \rtimes \Gamma$. • $C_r^*(X \times \Gamma) \cong C(X) \rtimes_r \Gamma$ if X is compact Hausdorff and Γ is discrete. \blacktriangleright Morita equivalent groupoids \rightsquigarrow Morita equivalent groupoid $C^*\mbox{-algebras}.$

- ▶ Morita equivalent groupoids \rightsquigarrow Morita equivalent groupoid C^* -algebras.
- An important tool to study $C_r^*(\mathcal{G})$ is to study its **ideal structure**, which is invariant under Morita equivalence.

- ▶ Morita equivalent groupoids \rightsquigarrow Morita equivalent groupoid C^* -algebras.
- An important tool to study $C_r^*(\mathcal{G})$ is to study its **ideal structure**, which is invariant under Morita equivalence.

▶ If we understand the ideal structure, then we can chop a C^* -algebra into easy-handled pieces. This philosophy plays an important role not only in C^* -algebra structure theory, but also in higher index theory.

Known results

- Simplicity of $C_r^*(G)$: Breuillard, Kalantar, Kennedy, Ozawa... (dynamics of G on its Furstenberg boundary)
- Ideal structure of C(X) ⋊_r Γ: Renault, Sierakowski,... (invariant open subsets of X and dynamics)
- Ideal structure of $C_u^*(X)$: Chen, Wang, Z,... (coarse geometry of metric spaces)
- \bullet Ideal structure of $C^*_r(\mathcal{G})$: Li, Bönicke, Brix, Carlsen, Sims, Brown, Fuller, Pitts, Reznikoff, ...

Known results

- Simplicity of $C_r^*(G)$: Breuillard, Kalantar, Kennedy, Ozawa... (dynamics of G on its Furstenberg boundary)
- Ideal structure of C(X) ⋊_r Γ: Renault, Sierakowski,... (invariant open subsets of X and dynamics)
- Ideal structure of $C_u^*(X)$: Chen, Wang, Z,... (coarse geometry of metric spaces)
- \bullet Ideal structure of $C^*_r(\mathcal{G})$: Li, Bönicke, Brix, Carlsen, Sims, Brown, Fuller, Pitts, Reznikoff, \ldots

Convention

Always assume that \mathcal{G} is a locally compact Hausdorff and étale groupoid.

3 Applications and Examples

Fact: The commutative C^* -algebra $C_0(\mathcal{G}^{(0)})$ is a subalgebra in $C^*_r(\mathcal{G})$.

Fact: The commutative C^* -algebra $C_0(\mathcal{G}^{(0)})$ is a subalgebra in $C^*_r(\mathcal{G})$.

• Ideal I in $C^*_r(\mathcal{G}) \leadsto \text{ideal} \ I \cap C_0(\mathcal{G}^{(0)})$ in $C_0(\mathcal{G}^{(0)})$

Fact: The commutative C^* -algebra $C_0(\mathcal{G}^{(0)})$ is a subalgebra in $C_r^*(\mathcal{G})$.

• Ideal I in $C^*_r(\mathcal{G}) \rightsquigarrow$ ideal $I \cap C_0(\mathcal{G}^{(0)})$ in $C_0(\mathcal{G}^{(0)})$

$$\implies I \cap C_0(\mathcal{G}^{(0)}) = C_0(U_I) \text{ for}$$
$$U_I := \{ x \in \mathcal{G}^{(0)} : \exists f \in I \cap C_0(\mathcal{G}^{(0)}) \text{ s.t. } f(x) \neq 0 \}.$$

- **Fact:** The commutative C^* -algebra $C_0(\mathcal{G}^{(0)})$ is a subalgebra in $C^*_r(\mathcal{G})$.
- Ideal I in $C^*_r(\mathcal{G}) \leadsto \operatorname{ideal} I \cap C_0(\mathcal{G}^{(0)})$ in $C_0(\mathcal{G}^{(0)})$

$$\implies I \cap C_0(\mathcal{G}^{(0)}) = C_0(U_I) \text{ for}$$
$$U_I := \{ x \in \mathcal{G}^{(0)} : \exists f \in I \cap C_0(\mathcal{G}^{(0)}) \text{ s.t. } f(x) \neq 0 \}.$$

Then U_I is open and **invariant**: $\forall \gamma \in \mathcal{G}$ with $s(\gamma) \in U_I$, then $r(\gamma) \in U_I$.

• We say that U_I is the inner support of I.

Given an invariant open $U \subseteq \mathcal{G}^{(0)}$, the ideal in $C_r^*(\mathcal{G})$ generated by $C_0(U)$ is called the **dynamical ideal** associated to U, denoted by I(U).

Given an invariant open $U \subseteq \mathcal{G}^{(0)}$, the ideal in $C_r^*(\mathcal{G})$ generated by $C_0(U)$ is called the **dynamical ideal** associated to U, denoted by I(U).

• $I(U) \cap C_0(\mathcal{G}^{(0)}) = C_0(U)$, and $I(U_I) = \langle I \cap C_0(\mathcal{G}^{(0)}) \rangle$.

 $\Longrightarrow I(U)$ is the smallest ideal I in $C^*_r(\mathcal{G})$ with $U_I = U$, and

Given an invariant open $U \subseteq \mathcal{G}^{(0)}$, the ideal in $C_r^*(\mathcal{G})$ generated by $C_0(U)$ is called the **dynamical ideal** associated to U, denoted by I(U).

- $I(U) \cap C_0(\mathcal{G}^{(0)}) = C_0(U)$, and $I(U_I) = \langle I \cap C_0(\mathcal{G}^{(0)}) \rangle$.
 - $\implies I(U)$ is the smallest ideal I in $C_r^*(\mathcal{G})$ with $U_I = U$, and

 $\{$ dynamical ideals $\} \longleftrightarrow \{$ invariant open subsets of $\mathcal{G}^{(0)}\}.$

Theorem (Bönicke and Li, 2020)

All ideals in $C_r^*(\mathcal{G})$ are dynamical $\iff \mathcal{G}$ is inner exact and has the residual intersection property.

Theorem (Bönicke and Li, 2020)

All ideals in $C_r^*(\mathcal{G})$ are dynamical $\iff \mathcal{G}$ is inner exact and has the residual intersection property.

• G is inner exact if for any invariant open $U \subseteq G^{(0)}$, the following sequence is exact:

$$0 \longrightarrow C_r^*(\mathcal{G}_U) \longrightarrow C_r^*(\mathcal{G}) \longrightarrow C_r^*(\mathcal{G}_{\mathcal{G}^{(0)}\setminus U}) \longrightarrow 0.$$

(Note: $C_r^*(\mathcal{G}_U) \cong I(U)$.)
Theorem (Bönicke and Li, 2020)

All ideals in $C_r^*(\mathcal{G})$ are dynamical $\iff \mathcal{G}$ is inner exact and has the residual intersection property.

• \mathcal{G} is inner exact if for any invariant open $U \subseteq \mathcal{G}^{(0)}$, the following sequence is exact:

$$0 \longrightarrow C_r^*(\mathcal{G}_U) \longrightarrow C_r^*(\mathcal{G}) \longrightarrow C_r^*(\mathcal{G}_{\mathcal{G}^{(0)}\setminus U}) \longrightarrow 0.$$

(Note: $C_r^*(\mathcal{G}_U) \cong I(U)$.)

• \mathcal{G} has the intersection property if \forall ideal $I \neq 0$, then $I \cap C_0(\mathcal{G}^{(0)}) \neq 0$. \mathcal{G} has the residual intersection property if $\mathcal{G}_{\mathcal{G}^{(0)}\setminus U}$ has the intersection property for any invariant open $U \subseteq \mathcal{G}^{(0)}$.

Outer supports and a sandwiching result

 $\bullet~{\rm Regard}$ elements in $C^*_r({\mathcal G})$ as functions on ${\mathcal G}\colon\,\exists$ a linear contractive map

 $j: C^*_r(\mathcal{G}) \to C_0(\mathcal{G}) \quad \text{by} \quad j(a)(\gamma) := \langle \lambda_{s(\gamma)}(a) \delta_{s(\gamma)}, \delta_\gamma \rangle, \quad \text{for} \quad \gamma \in \mathcal{G}.$

(Intuition: $j|_{C_c(\mathcal{G})} = \mathrm{Id}_{C_c(\mathcal{G})}$.)

- Regard elements in $C_r^*(\mathcal{G})$ as functions on \mathcal{G} : \exists a linear contractive map $j: C_r^*(\mathcal{G}) \to C_0(\mathcal{G})$ by $j(a)(\gamma) := \langle \lambda_{s(\gamma)}(a)\delta_{s(\gamma)}, \delta_{\gamma} \rangle$, for $\gamma \in \mathcal{G}$. (Intuition: $j|_{C_c(\mathcal{G})} = \mathrm{Id}_{C_c(\mathcal{G})}$.)
- Given an ideal I in $C_r^*(\mathcal{G})$, define its **outer support** to be

$$V_I := \{ x \in \mathcal{G}^{(0)} : \exists a \in I \text{ such that } j(a)(x) \neq 0 \}$$
$$= \bigcup_{a \in I} r(\{ \gamma \in \mathcal{G} : j(a)(\gamma) \neq 0 \}).$$

- Regard elements in $C_r^*(\mathcal{G})$ as functions on \mathcal{G} : \exists a linear contractive map $j: C_r^*(\mathcal{G}) \to C_0(\mathcal{G})$ by $j(a)(\gamma) := \langle \lambda_{s(\gamma)}(a)\delta_{s(\gamma)}, \delta_{\gamma} \rangle$, for $\gamma \in \mathcal{G}$. (Intuition: $j|_{C_c(\mathcal{G})} = \mathrm{Id}_{C_c(\mathcal{G})}$.)
- Given an ideal I in $C_r^*(\mathcal{G})$, define its **outer support** to be

$$V_I := \{ x \in \mathcal{G}^{(0)} : \exists a \in I \text{ such that } j(a)(x) \neq 0 \}$$
$$= \bigcup_{a \in I} r(\{ \gamma \in \mathcal{G} : j(a)(\gamma) \neq 0 \}).$$

Theorem (Brix, Carlsen and Sims, 2024)

Assume that \mathcal{G} is inner exact. Given an ideal I in $C_r^*(\mathcal{G})$, then $I(U_I)$ is the largest dynamical ideal contained in I, and $I(V_I)$ is the smallest dynamical ideal containing I.

A sandwiching result: beyond inner exactness

▶ Aim: To explore a sandwiching result beyond inner exactness

Aim: To explore a sandwiching result beyond inner exactness

Definition (Li and Z, 2025+)

For an invariant open subset $U \subseteq \mathcal{G}^{(0)}$, the associated **ghostly ideal** is:

$$\tilde{I}(U) := \{ a \in C_r^*(\mathcal{G}) : r(\{ \gamma \in \mathcal{G} : j(a)(\gamma) \neq 0 \}) \subseteq U \}$$

▶ Aim: To explore a sandwiching result beyond inner exactness

Definition (Li and Z, 2025+)

For an invariant open subset $U \subseteq \mathcal{G}^{(0)}$, the associated **ghostly ideal** is:

 $\tilde{I}(U) := \{ a \in C_r^*(\mathcal{G}) : r(\{ \gamma \in \mathcal{G} : j(a)(\gamma) \neq 0 \}) \subseteq U \}.$

Theorem (Li and Z, 2025+)

Given an ideal I in $C_r^*(\mathcal{G})$, then $I(U_I)$ is the largest dynamical ideal contained in I, and $\tilde{I}(V_I)$ is the smallest ghostly ideal containing I. ▶ Aim: To explore a sandwiching result beyond inner exactness

Definition (Li and Z, 2025+)

For an invariant open subset $U \subseteq \mathcal{G}^{(0)}$, the associated **ghostly ideal** is:

 $\tilde{I}(U) := \{ a \in C_r^*(\mathcal{G}) : r(\{ \gamma \in \mathcal{G} : j(a)(\gamma) \neq 0 \}) \subseteq U \}.$

Theorem (Li and Z, 2025+)

Given an ideal I in $C_r^*(\mathcal{G})$, then $I(U_I)$ is the largest dynamical ideal contained in I, and $\tilde{I}(V_I)$ is the smallest ghostly ideal containing I.

Proposition

For any invariant open $U \subseteq \mathcal{G}^{(0)}$, we have a short exact sequence:

$$0 \longrightarrow \tilde{I}(U) \longrightarrow C_r^*(\mathcal{G}) \longrightarrow C_r^*(\mathcal{G}_{\mathcal{G}^{(0)} \setminus U}) \longrightarrow 0.$$

Two types of ideals:

- **9** Type I: $I(U_I) \subseteq I \subseteq I(V_I)$ (no need for the ghostly part!)
- **2** Type II: $U_I = V_I$, *i.e.*, $I(U_I) \subseteq I \subseteq \tilde{I}(U_I)$.

Two types of ideals:

- **9** Type I: $I(U_I) \subseteq I \subseteq I(V_I)$ (no need for the ghostly part!)
- **2** Type II: $U_I = V_I$, *i.e.*, $I(U_I) \subseteq I \subseteq \tilde{I}(U_I)$.

Strategy: To study the ideal structure for $C_r^*(\mathcal{G})$, does it suffice to merely consider ideals of Type I and II?

Two types of ideals:

- **9** Type I: $I(U_I) \subseteq I \subseteq I(V_I)$ (no need for the ghostly part!)
- **2** Type II: $U_I = V_I$, *i.e.*, $I(U_I) \subseteq I \subseteq \tilde{I}(U_I)$.

Strategy: To study the ideal structure for $C_r^*(\mathcal{G})$, does it suffice to merely consider ideals of Type I and II?

Theorem (Li and Z, 2025+)

Any ideal in $C_r^*(\mathcal{G})$ can be reconstructed using type I and type II ideals.

When is a given ideal I in $C_r^*(\mathcal{G})$ of type II, *i.e.*, $U_I = V_I$?

When is a given ideal I in
$$C_r^*(\mathcal{G})$$
 of type II, *i.e.*, $U_I = V_I$?

• For $x \in \mathcal{G}^{(0)}$, the isotropy group at x is $\mathcal{G}^x_x := \{\gamma \in \mathcal{G} : s(\gamma) = r(\gamma) = x\}$, and the isotropy groupoid is

$$\operatorname{Iso}(\mathcal{G}) := \bigsqcup_{x \in \mathcal{G}^{(0)}} \mathcal{G}_x^x.$$

When is a given ideal I in
$$C_r^*(\mathcal{G})$$
 of type II, *i.e.*, $U_I = V_I$?

• For $x \in \mathcal{G}^{(0)}$, the isotropy group at x is $\mathcal{G}_x^x := \{\gamma \in \mathcal{G} : s(\gamma) = r(\gamma) = x\}$, and the isotropy groupoid is

$$\operatorname{Iso}(\mathcal{G}) := \bigsqcup_{x \in \mathcal{G}^{(0)}} \mathcal{G}_x^x.$$

• \mathcal{G} is called **effective** if the interior of $\operatorname{Iso}(\mathcal{G})$ is $\mathcal{G}^{(0)}$. \mathcal{G} is called **strongly effective** if \mathcal{G}_D is effective for any invariant closed $D \subseteq \mathcal{G}^{(0)}$.

When is a given ideal I in
$$C_r^*(\mathcal{G})$$
 of type II, *i.e.*, $U_I = V_I$?

• For $x \in \mathcal{G}^{(0)}$, the isotropy group at x is $\mathcal{G}_x^x := \{\gamma \in \mathcal{G} : s(\gamma) = r(\gamma) = x\}$, and the isotropy groupoid is

$$\operatorname{Iso}(\mathcal{G}) := \bigsqcup_{x \in \mathcal{G}^{(0)}} \mathcal{G}_x^x.$$

• \mathcal{G} is called **effective** if the interior of $\operatorname{Iso}(\mathcal{G})$ is $\mathcal{G}^{(0)}$. \mathcal{G} is called **strongly effective** if \mathcal{G}_D is effective for any invariant closed $D \subseteq \mathcal{G}^{(0)}$.

Theorem (Li and Z, 2025+)

Let \mathcal{G} be a locally compact Hausdorff and étale groupoid. An ideal I in $C_r^*(\mathcal{G})$ is of type II (i.e., $U_I = V_I$) if and only if $\mathcal{G}_{V_I \setminus U_I}$ is effective. Hence if \mathcal{G} is strongly effective, then every ideal in $C_r^*(\mathcal{G})$ is of type II.

Let M be a closed smooth manifold, and E, F be smooth vector bundles over M. Let $P : \Gamma(E) \to \Gamma(F)$ be an elliptic differential operator. Then Pis Fredholm, and its analytical index is equal to its topological index:

 $\operatorname{Index}_{a}(P) = \operatorname{Index}_{top}(P).$

• $Index_a(P) := dim(KerP) - dim(CokerP)$, called the **Fredholm index**.

Let M be a closed smooth manifold, and E, F be smooth vector bundles over M. Let $P : \Gamma(E) \to \Gamma(F)$ be an elliptic differential operator. Then Pis Fredholm, and its analytical index is equal to its topological index:

 $\operatorname{Index}_{a}(P) = \operatorname{Index}_{top}(P).$

• $Index_a(P) := dim(KerP) - dim(CokerP)$, called the **Fredholm index**.

Question: For non-compact manifolds, usually $\dim(KerP) = \infty$. How to define their "*indices*"?

Let M be a closed smooth manifold, and E, F be smooth vector bundles over M. Let $P : \Gamma(E) \to \Gamma(F)$ be an elliptic differential operator. Then Pis Fredholm, and its analytical index is equal to its topological index:

 $\operatorname{Index}_{a}(P) = \operatorname{Index}_{top}(P).$

• $Index_a(P) := dim(KerP) - dim(CokerP)$, called the **Fredholm index**.

Question: For non-compact manifolds, usually $\dim(KerP) = \infty$. How to define their "*indices*"? \rightsquigarrow K-theory!

Let M be a closed smooth manifold, and E, F be smooth vector bundles over M. Let $P : \Gamma(E) \to \Gamma(F)$ be an elliptic differential operator. Then Pis Fredholm, and its analytical index is equal to its topological index:

 $\operatorname{Index}_{a}(P) = \operatorname{Index}_{top}(P).$

• $\operatorname{Index}_{a}(P) := \dim(KerP) - \dim(CokerP)$, called the **Fredholm index**.

Question: For non-compact manifolds, usually $\dim(KerP) = \infty$. How to define their "*indices*"? \rightsquigarrow K-theory!

Observation: $K_0(C^*$ -algebra of compact operators) $\cong \mathbb{Z}$. Hence, we may define indices (called "*higher indices*") in $K_*(A)$ for some C^* -algebra A. (Baum, Connes, Higson, Kasparov, Moscovici, Roe, Skandalis...)

Let M be a closed smooth manifold, and E, F be smooth vector bundles over M. Let $P : \Gamma(E) \to \Gamma(F)$ be an elliptic differential operator. Then Pis Fredholm, and its analytical index is equal to its topological index:

 $\operatorname{Index}_{a}(P) = \operatorname{Index}_{top}(P).$

• $Index_a(P) := dim(KerP) - dim(CokerP)$, called the **Fredholm index**.

Question: For non-compact manifolds, usually $\dim(KerP) = \infty$. How to define their "*indices*"? \rightsquigarrow K-theory!

Observation: $K_0(C^*$ -algebra of compact operators) $\cong \mathbb{Z}$. Hence, we may define indices (called "*higher indices*") in $K_*(A)$ for some C^* -algebra A. (Baum, Connes, Higson, Kasparov, Moscovici, Roe, Skandalis...)

► Higher index theory: studying index theory on non-compact manifolds.

▶ For elliptic differential operators on an open manifold, Roe constructed a C^* -algebra whose K-theory contains their higher indices.

▶ For elliptic differential operators on an open manifold, Roe constructed a C^* -algebra whose K-theory contains their higher indices.

• Let X be a discrete metric space of bounded geometry (*i.e.*, for any R > 0, $\sup_{x \in X} \sharp B(x, R) < \infty$).

▶ For elliptic differential operators on an open manifold, Roe constructed a C^* -algebra whose K-theory contains their higher indices.

• Let X be a discrete metric space of bounded geometry (*i.e.*, for any R > 0, $\sup_{x \in X} \sharp B(x, R) < \infty$).

• An operator $T \in \mathfrak{B}(\ell^2(X))$ can be regarded as an X-by-X matrix $(T_{x,y})_{x,y \in X}$ where $T_{x,y} \in \mathbb{C}$. Say that T has finite propagation if $\exists R > 0$ such that $T_{x,y} = 0, \forall x, y \in X$ with d(x, y) > R.

▶ For elliptic differential operators on an open manifold, Roe constructed a C^* -algebra whose K-theory contains their higher indices.

• Let X be a discrete metric space of bounded geometry (*i.e.*, for any R > 0, $\sup_{x \in X} \sharp B(x, R) < \infty$).

• An operator $T \in \mathfrak{B}(\ell^2(X))$ can be regarded as an X-by-X matrix $(T_{x,y})_{x,y \in X}$ where $T_{x,y} \in \mathbb{C}$. Say that T has finite propagation if $\exists R > 0$ such that $T_{x,y} = 0, \forall x, y \in X$ with d(x, y) > R.

Definition

Denote by $\mathbb{C}_u[X]$ the *-algebra in $\mathfrak{B}(\ell^2(X))$ consisting of all finite propagation operators. The **uniform Roe algebra** of X is the norm closure of $\mathbb{C}_u[X]$ in $\mathfrak{B}(\ell^2(X))$, denoted by $C_u^*(X)$. ▶ For elliptic differential operators on an open manifold, Roe constructed a C^* -algebra whose K-theory contains their higher indices.

• Let X be a discrete metric space of bounded geometry (i.e., for any R>0, $\sup_{x\in X} \sharp B(x,R)<\infty$).

• An operator $T \in \mathfrak{B}(\ell^2(X))$ can be regarded as an X-by-X matrix $(T_{x,y})_{x,y \in X}$ where $T_{x,y} \in \mathbb{C}$. Say that T has finite propagation if $\exists R > 0$ such that $T_{x,y} = 0, \forall x, y \in X$ with d(x, y) > R.

Definition

Denote by $\mathbb{C}_u[X]$ the *-algebra in $\mathfrak{B}(\ell^2(X))$ consisting of all finite propagation operators. The **uniform Roe algebra** of X is the norm closure of $\mathbb{C}_u[X]$ in $\mathfrak{B}(\ell^2(X))$, denoted by $C_u^*(X)$.

• (Uniform) Roe algebras play an important role in index theory, C^* -algebra theory, operator theory, topological dynamics, etc.

$$G(X) := \bigcup_{r>0} \overline{E_r}^{\beta(X \times X)} \subseteq \beta(X \times X),$$

where $\beta(X \times X)$ is the Stone-Čech compactification of $X \times X$.

$$G(X) := \bigcup_{r>0} \overline{E_r}^{\beta(X \times X)} \subseteq \beta(X \times X),$$

where $\beta(X \times X)$ is the Stone-Čech compactification of $X \times X$.

• $X \times X$ is the pair groupoid with s(x, y) = y and r(x, y) = x. These maps extend to maps $G(X) \rightarrow \beta X$, still denoted by r and s.

$$G(X) := \bigcup_{r>0} \overline{E_r}^{\beta(X \times X)} \subseteq \beta(X \times X),$$

where $\beta(X \times X)$ is the Stone-Čech compactification of $X \times X$.

• $X \times X$ is the pair groupoid with s(x, y) = y and r(x, y) = x. These maps extend to maps $G(X) \rightarrow \beta X$, still denoted by r and s.

• Consider $(r,s) : G(X) \to \beta X \times \beta X$, which is injective. Hence G(X) can be endowed with a groupoid structure induced by the pair groupoid $\beta X \times \beta X$, called the **coarse groupoid** of X.

$$G(X) := \bigcup_{r>0} \overline{E_r}^{\beta(X \times X)} \subseteq \beta(X \times X),$$

where $\beta(X \times X)$ is the Stone-Čech compactification of $X \times X$.

• $X \times X$ is the pair groupoid with s(x, y) = y and r(x, y) = x. These maps extend to maps $G(X) \rightarrow \beta X$, still denoted by r and s.

• Consider $(r,s) : G(X) \to \beta X \times \beta X$, which is injective. Hence G(X) can be endowed with a groupoid structure induced by the pair groupoid $\beta X \times \beta X$, called the **coarse groupoid** of X.

Proposition (Skandalis-Tu-Yu, 2002)

The coarse groupoid G(X) for a discrete metric space X with bounded geometry is étale, locally compact and Hausdorff with unit space βX .

• $\tilde{I}(X)$ is the ideal of all ghost operators in $C_u^*(X)$. Recall: $T \in C_u^*(X)$ is called a ghost operator if $\forall \varepsilon > 0$, \exists finite $F \subseteq X$ such that $|T_{x,y}| < \varepsilon$ for $(x, y) \notin F \times F$, where $T_{x,y} := \langle \delta_x, T\delta_y \rangle \in \mathbb{C}$.

• $\tilde{I}(X)$ is the ideal of all ghost operators in $C_u^*(X)$. Recall: $T \in C_u^*(X)$ is called a ghost operator if $\forall \varepsilon > 0$, \exists finite $F \subseteq X$ such that $|T_{x,y}| < \varepsilon$ for $(x, y) \notin F \times F$, where $T_{x,y} := \langle \delta_x, T\delta_y \rangle \in \mathbb{C}$.

Theorem (Chen-Wang 2004, Roe-Willett 2014)

For a discrete metric space X of bounded geometry, TFAE:

- **1** X has Yu's Property A;
- 2 all ideals in $C^*_u(X)$ are dynamical;

$$I(X) = \tilde{I}(X).$$

• $\tilde{I}(X)$ is the ideal of all ghost operators in $C_u^*(X)$. Recall: $T \in C_u^*(X)$ is called a ghost operator if $\forall \varepsilon > 0$, \exists finite $F \subseteq X$ such that $|T_{x,y}| < \varepsilon$ for $(x, y) \notin F \times F$, where $T_{x,y} := \langle \delta_x, T\delta_y \rangle \in \mathbb{C}$.

Theorem (Chen-Wang 2004, Roe-Willett 2014)

For a discrete metric space X of bounded geometry, TFAE:

- **1** X has Yu's Property A;
- 2 all ideals in $C^*_u(X)$ are dynamical;

$$I(X) = \tilde{I}(X).$$

• Since G(X) is principal, then all ideals in $C^*_u(X)$ have type II.

Regular ideals

• Let A be a C^* -algebra and $X \subseteq A$. Denote

$$X^{\perp} := \{ a \in A : ax = xa = 0, \forall x \in X \}.$$

Regular ideals

• Let A be a C^* -algebra and $X \subseteq A$. Denote

$$X^{\perp} := \{ a \in A : ax = xa = 0, \forall x \in X \}.$$

Definition

An ideal J in A is called **regular** if $J = J^{\perp \perp}$.
Regular ideals

• Let A be a C^* -algebra and $X \subseteq A$. Denote

$$X^{\perp} := \{ a \in A : ax = xa = 0, \forall x \in X \}.$$

Definition

An ideal J in A is called **regular** if $J = J^{\perp \perp}$.

Example

For a topological space X and open $U \subseteq X$, $C_0(U)$ is regular \iff the interior of \overline{U} equals U (in this case, we say that U is regular).

Regular ideals

• Let A be a C^* -algebra and $X \subseteq A$. Denote

$$X^{\perp} := \{ a \in A : ax = xa = 0, \forall x \in X \}.$$

Definition

An ideal J in A is called **regular** if $J = J^{\perp \perp}$.

Example

For a topological space X and open $U \subseteq X$, $C_0(U)$ is regular \iff the interior of \overline{U} equals U (in this case, we say that U is regular).

Lemma

For a regular open
$$U\subseteq \mathcal{G}^{(0)}$$
, we have $ilde{I}(U)=I(U)^{\perp\perp}$.

• \mathcal{G} has the **regular intersection property** if for any regular ideal I in $C_r^*(\mathcal{G})$, $I \cap C_0(\mathcal{G}^{(0)}) = 0$ implies I = 0.

• \mathcal{G} has the **regular intersection property** if for any regular ideal I in $C_r^*(\mathcal{G})$, $I \cap C_0(\mathcal{G}^{(0)}) = 0$ implies I = 0.

Theorem (Li and Z, 2025+)

TFAE:

- every regular ideal is ghostly;
- ② U → Ĩ(U) is a bijection between regular invariant open subsets of G⁽⁰⁾ and regular ideals in C^{*}_r(G);
- for any regular ideal I, $U_I = V_I$;
- G has the regular intersection property.

• \mathcal{G} has the **regular intersection property** if for any regular ideal I in $C_r^*(\mathcal{G})$, $I \cap C_0(\mathcal{G}^{(0)}) = 0$ implies I = 0.

Theorem (Li and Z, 2025+)

TFAE:

- every regular ideal is ghostly;
- ② U → Ĩ(U) is a bijection between regular invariant open subsets of G⁽⁰⁾ and regular ideals in C^{*}_r(G);

• for any regular ideal I,
$$U_I = V_I$$
;

• *G* has the regular intersection property.

• (4) \Rightarrow (2) is proved by Brown, Fuller, Pitts and Reznikoff (2024).

• Let G be a discrete group, and X a G-boundary (*i.e.*, a minimal and strongly proximal compact Hausdorff space).

• Let G be a discrete group, and X a G-boundary (*i.e.*, a minimal and strongly proximal compact Hausdorff space).

• For $x \in X$, denote $G_x := \{g \in G : gx = x\}$. If G_x is amenable, we have the trivial representation $\tau_x : C_r^*(G_x) \to \mathbb{C}$. Denote its kernel by I_x .

• Let G be a discrete group, and X a G-boundary (*i.e.*, a minimal and strongly proximal compact Hausdorff space).

• For $x \in X$, denote $G_x := \{g \in G : gx = x\}$. If G_x is amenable, we have the trivial representation $\tau_x : C_r^*(G_x) \to \mathbb{C}$. Denote its kernel by I_x .

• The **Furstenberg boundary** $\partial_F G$ is the universal *G*-boundary. $\forall x \in \partial_F G$, G_x is amenable. There is a c.c.p. map

$$\vartheta_{x,r}: C(\partial_F G) \rtimes_r G \to C_r^*(G_x),$$

and denote the induced ideal

 $\mathrm{Ind}(I_x) := \{ x \in C(\partial_F G) \rtimes_r G : \vartheta_{x,r}(b^*a^*ab) \in I_x, \forall \ b \in C(\partial_F G) \rtimes_r G \}.$

Theorem (Li and Z, 2025+)

Consider a discrete group G acting on its Furstenberg boundary $\partial_F G$. Given $x \in \partial_F G$, TFAE:

- the ideal $\operatorname{Ind}(I_x)$ in $C(\partial_F G) \rtimes_r G$ is ghostly;
- $2 V_{\mathrm{Ind}(I_x)} \neq \partial_F G;$
- $Ind(I_x) = 0;$
- the action is (topologically) free.

Theorem (Li and Z, 2025+)

Consider a discrete group G acting on its Furstenberg boundary $\partial_F G$. Given $x \in \partial_F G$, TFAE:

- the ideal $\operatorname{Ind}(I_x)$ in $C(\partial_F G) \rtimes_r G$ is ghostly;
- $2 \ V_{\mathrm{Ind}(I_x)} \neq \partial_F G;$
- $Ind(I_x) = 0;$
- the action is (topologically) free.

Corollary

TFAE:

- the Thompson's group F is non-amenable;
- 2 the Thompson's group T is C^* -simple;
- **③** the action of T on $\partial_F T$ is (topologically) free;
- $\exists x \in \partial_F T$ such that $\operatorname{Ind}(I_x)$ is ghostly;
- $\exists x \in \partial_F T$ such that $V_{\mathrm{Ind}(I_x)} = \emptyset$.

Thank you for your attention!