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C∗-algebras

Definition
A C∗-algebra is a ∗-subalgebra of B(H) which is closed under the norm
topology. Here H is a Hilbert space and B(H) is the set of all linear con-
tinuous operators on H.

There is an abstract definition of C∗-algebra, i.e., a C∗-algebra is a ∗-
algebra A over C together with a norm ‖ · ‖ satisfying: ∀a, b ∈ A, we have

1 ‖ab‖ ≤ ‖a‖ · ‖b‖;
2 ‖a∗a‖ = ‖a‖2 (C∗-identity);
3 A is complete under the norm ‖ · ‖.

This is equivalent to the above by the Gelfand-Naimark-Segal construction.

▶ For a locally compact Hausdorff space X, then

C0(X) = {f ∈ C(X) : f vanishes at infinity}

is a C∗-algebra. Conversely, any commutative C∗-algebra has this form.
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C∗-algebras: A bridging example

Let G be a discrete group. Cc(G) is a ∗-algebra: For f, g ∈ Cc(G) and
γ ∈ G, define

(f ∗ g)(γ) :=
∑
α∈G

f(γα−1)g(α),

f∗(γ) := f(γ−1).

Consider the left regular representation λ : Cc(G)→ B(ℓ2(G)) by(
λ(f)ξ

)
(γ) :=

∑
α∈G

f(γα−1)ξ(α), where f ∈ Cc(G) and ξ ∈ ℓ2(G).

The reduced norm on Cc(G) is ‖f‖r := ‖λ(f)‖. The reduced group
C∗-algebra C∗

r (G) is the completion of the ∗-algebra Cc(G) w.r.t. ‖ · ‖r.

Example
For G = Z, then C∗

r (G) = C(T) by the Fourier transformation.
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Groupoids

▶ Groupoids provide a framework encompassing both groups and topological
spaces. They arise naturally in a variety of research areas such as topologi-
cal dynamics, topology and geometry, geometric group theory and operator
algebras, building bridges between all these areas of mathematics.

▶ In 1980s, Renault initiated the study of C∗-algebras associated to groupoids.
Since then, groupoids gave rise to an extraordinarily rich class of operator
algebras.

▶ Recently in 2020, X.Lin proved that every classifiable C∗-algebra admits
a (twisted) groupoid model.
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Basic notions for groupoids

A groupoid consists of a set G, a subset G(0) called the unit space, two
maps s, r : G → G(0) called the source and range maps, respectively, a
composition law:

G(2) := {(γ1, γ2) ∈ G × G : s(γ1) = r(γ2)} 3 (γ1, γ2) 7→ γ1γ2 ∈ G,

and an inverse map γ 7→ γ−1 satisfying a couple of axioms.

A locally compact Hausdorff groupoid is a groupoid equipped with a
locally compact and Hausdorff topology such that structure maps are con-
tinuous. It is called étale if r is a local homeomorphism.

For U ⊆ G(0), denote GU := s−1(U). Étaleness ⇒ each Gx := G{x} is
discrete.
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Reduced groupoid C∗-algebras

Let G be a locally compact, Hausdorff and étale groupoid.

Cc(G) is a ∗-algebra: For f, g ∈ Cc(G) and γ ∈ G, define

(f ∗ g)(γ) :=
∑

α∈Gs(γ)

f(γα−1)g(α),

f∗(γ) := f(γ−1).

For x ∈ G(0), consider λx : Cc(G)→ B(ℓ2(Gx)) defined by(
λx(f)ξ

)
(γ) :=

∑
α∈Gx

f(γα−1)ξ(α), where f ∈ Cc(G) and ξ ∈ ℓ2(Gx).

The reduced norm on Cc(G) is ‖f‖r := supx∈G(0) ‖λx(f)‖. The reduced
groupoid C∗-algebra C∗

r (G) is the completion of the ∗-algebra Cc(G) with
respect to the reduced norm ‖ · ‖r.
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Basic examples

Example
A group G is a groupoid with unit space {1G}. A set X is a groupoid with
unit space X, r(x) = s(x) = x.
C∗

r (G) is the usual reduced group C∗-algebra.

Example (Pair groupoid)
For a set X, the product X×X is a groupoid with unit space X, s(x, y) = y,
r(x, y) = x, (x, y) · (y, z) = (x, z) and (x, y)−1 = (y, x).
C∗

r (X×X) is the algebra of compact operators on ℓ2(X) if X is discrete.

Example (Transformation groupoid)
Let Γ be a group acting on a set X. The product X × Γ is a groupoid with
unit space X, s(x, γ) = γ−1x, r(x, γ) = x, (x, γ)−1 = (γ−1x, γ−1) and
(γx, γ) · (x, γ′) = (γx, γγ′). Denote this groupoid by X ⋊ Γ.
C∗

r (X × Γ) ∼= C(X)⋊r Γ if X is compact Hausdorff and Γ is discrete.
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Ideal Structures

▶ Morita equivalent groupoids ⇝ Morita equivalent groupoid C∗-algebras.

▶ An important tool to study C∗
r (G) is to study its ideal structure, which

is invariant under Morita equivalence.

▶ If we understand the ideal structure, then we can chop a C∗-algebra into
easy-handled pieces. This philosophy plays an important role not only in
C∗-algebra structure theory, but also in higher index theory.
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Ideal Structures

Known results
Simplicity of C∗

r (G): Breuillard, Kalantar, Kennedy, Ozawa...
(dynamics of G on its Furstenberg boundary)
Ideal structure of C(X)⋊r Γ: Renault, Sierakowski,...
(invariant open subsets of X and dynamics)
Ideal structure of C∗

u(X): Chen, Wang, Z,...
(coarse geometry of metric spaces)
Ideal structure of C∗

r (G): Li, Bönicke, Brix, Carlsen, Sims, Brown,
Fuller, Pitts, Reznikoff, ...

Convention
Always assume that G is a locally compact Hausdorff and étale groupoid.
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Inner supports

Idea: Using commutative objects to parametrise ideals in C∗
r (G).

Fact: The commutative C∗-algebra C0(G(0)) is a subalgebra in C∗
r (G).

Ideal I in C∗
r (G) ⇝ ideal I ∩ C0(G(0)) in C0(G(0))

=⇒ I ∩ C0(G(0)) = C0(UI) for

UI := {x ∈ G(0) : ∃ f ∈ I ∩ C0(G(0)) s.t. f(x) 6= 0}.

Then UI is open and invariant: ∀γ ∈ G with s(γ) ∈ UI , then r(γ) ∈ UI .

We say that UI is the inner support of I.
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Dynamical Ideals

Definition
Given an invariant open U ⊆ G(0), the ideal in C∗

r (G) generated by C0(U)
is called the dynamical ideal associated to U , denoted by I(U).

I(U) ∩ C0(G(0)) = C0(U), and I(UI) = 〈I ∩ C0(G(0))〉.

=⇒ I(U) is the smallest ideal I in C∗
r (G) with UI = U , and

{dynamical ideals} ←→ {invariant open subsets of G(0)}.
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Characterising all ideals being dynamical

Theorem (Bönicke and Li, 2020)
All ideals in C∗

r (G) are dynamical ⇐⇒ G is inner exact and has the residual
intersection property.

G is inner exact if for any invariant open U ⊆ G(0), the following sequence
is exact:

0 −→ C∗
r (GU ) −→ C∗

r (G) −→ C∗
r (GG(0)\U ) −→ 0.

(Note: C∗
r (GU ) ∼= I(U).)

G has the intersection property if ∀ ideal I 6= 0, then I ∩C0(G(0)) 6= 0.
G has the residual intersection property if GG(0)\U has the intersection
property for any invariant open U ⊆ G(0).
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Outer supports and a sandwiching result

Regard elements in C∗
r (G) as functions on G: ∃ a linear contractive map

j : C∗
r (G)→ C0(G) by j(a)(γ) := 〈λs(γ)(a)δs(γ), δγ〉, for γ ∈ G.

(Intuition: j|Cc(G) = IdCc(G).)

Given an ideal I in C∗
r (G), define its outer support to be

VI : = {x ∈ G(0) : ∃ a ∈ I such that j(a)(x) 6= 0}

=
∪
a∈I

r({γ ∈ G : j(a)(γ) 6= 0}).

Theorem (Brix, Carlsen and Sims, 2024)
Assume that G is inner exact. Given an ideal I in C∗

r (G), then I(UI) is the
largest dynamical ideal contained in I, and I(VI) is the smallest dynamical
ideal containing I.
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A sandwiching result: beyond inner exactness

▶ Aim: To explore a sandwiching result beyond inner exactness

Definition (Li and Z, 2025+)

For an invariant open subset U ⊆ G(0), the associated ghostly ideal is:

Ĩ(U) := {a ∈ C∗
r (G) : r({γ ∈ G : j(a)(γ) 6= 0}) ⊆ U}.

Theorem (Li and Z, 2025+)
Given an ideal I in C∗

r (G), then I(UI) is the largest dynamical ideal contained
in I, and Ĩ(VI) is the smallest ghostly ideal containing I.

Proposition
For any invariant open U ⊆ G(0), we have a short exact sequence:

0 −→ Ĩ(U) −→ C∗
r (G) −→ C∗

r (GG(0)\U ) −→ 0.
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Type decomposition

▶ Two types of ideals:
1 Type I: I(UI) ⊆ I ⊆ I(VI) (no need for the ghostly part!)
2 Type II: UI = VI , i.e., I(UI) ⊆ I ⊆ Ĩ(UI).

▶ Strategy: To study the ideal structure for C∗
r (G), does it suffice to merely

consider ideals of Type I and II?

Theorem (Li and Z, 2025+)
Any ideal in C∗

r (G) can be reconstructed using type I and type II ideals.
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Characterisation for type II ideals

Question
When is a given ideal I in C∗

r (G) of type II, i.e., UI = VI?

For x ∈ G(0), the isotropy group at x is Gxx := {γ ∈ G : s(γ) = r(γ) = x},
and the isotropy groupoid is

Iso(G) :=
⊔

x∈G(0)

Gxx .

G is called effective if the interior of Iso(G) is G(0). G is called strongly
effective if GD is effective for any invariant closed D ⊆ G(0).

Theorem (Li and Z, 2025+)
Let G be a locally compact Hausdorff and étale groupoid. An ideal I in
C∗

r (G) is of type II (i.e., UI = VI) if and only if GVI\UI
is effective. Hence

if G is strongly effective, then every ideal in C∗
r (G) is of type II.
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Background on Higher index theory

Theorem (Atiyah-Singer, 1963)
Let M be a closed smooth manifold, and E,F be smooth vector bundles
over M . Let P : Γ(E)→ Γ(F ) be an elliptic differential operator. Then P
is Fredholm, and its analytical index is equal to its topological index:

Indexa(P ) = Indextop(P ).

Indexa(P ) := dim(KerP )−dim(CokerP ), called the Fredholm index.

Question: For non-compact manifolds, usually dim(KerP ) = ∞. How to
define their “indices”? ⇝ K-theory!

Observation: K0

(
C∗-algebra of compact operators

) ∼= Z. Hence, we may
define indices (called “higher indices”) in K∗(A) for some C∗-algebra A.
(Baum, Connes, Higson, Kasparov, Moscovici, Roe, Skandalis...)

▶ Higher index theory: studying index theory on non-compact manifolds.
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Roe algebras

▶ For elliptic differential operators on an open manifold, Roe constructed a
C∗-algebra whose K-theory contains their higher indices.

Let X be a discrete metric space of bounded geometry (i.e., for any R > 0,
supx∈X ♯B(x,R) <∞).

An operator T ∈ B(ℓ2(X)) can be regarded as an X-by-X matrix (Tx,y)x,y∈X

where Tx,y ∈ C. Say that T has finite propagation if ∃ R > 0 such that
Tx,y = 0, ∀ x, y ∈ X with d(x, y) > R.

Definition
Denote by Cu[X] the ∗-algebra in B(ℓ2(X)) consisting of all finite propa-
gation operators. The uniform Roe algebra of X is the norm closure of
Cu[X] in B(ℓ2(X)), denoted by C∗

u(X).

(Uniform) Roe algebras play an important role in index theory, C∗-algebra
theory, operator theory, topological dynamics, etc.
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Our motivation: the coarse groupoid

Let (X, d) be a discrete metric space with bounded geometry. For r > 0,
denote Er := {(x, y) ∈ X ×X : d(x, y) ≤ r}. As a topological space,

G(X) :=
∪
r>0

Er
β(X×X) ⊆ β(X ×X),

where β(X ×X) is the Stone-Čech compactification of X ×X.

X×X is the pair groupoid with s(x, y) = y and r(x, y) = x. These maps
extend to maps G(X)→ βX, still denoted by r and s.

Consider (r, s) : G(X) → βX × βX, which is injective. Hence G(X)
can be endowed with a groupoid structure induced by the pair groupoid
βX × βX, called the coarse groupoid of X.

Proposition (Skandalis-Tu-Yu, 2002)
The coarse groupoid G(X) for a discrete metric space X with bounded
geometry is étale, locally compact and Hausdorff with unit space βX.
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Our motivation: the coarse groupoid

C∗
r (G(X)) ∼= C∗

u(X), the uniform Roe algebra.

Ĩ(X) is the ideal of all ghost operators in C∗
u(X).

Recall: T ∈ C∗
u(X) is called a ghost operator if ∀ ε > 0, ∃ finite F ⊆ X

such that |Tx,y| < ε for (x, y) /∈ F × F , where Tx,y := 〈δx, T δy〉 ∈ C.

Theorem (Chen-Wang 2004, Roe-Willett 2014)
For a discrete metric space X of bounded geometry, TFAE:

1 X has Yu’s Property A;
2 all ideals in C∗

u(X) are dynamical;
3 I(X) = Ĩ(X).

Since G(X) is principal, then all ideals in C∗
u(X) have type II.
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Regular ideals

Let A be a C∗-algebra and X ⊆ A. Denote

X⊥ := {a ∈ A : ax = xa = 0, ∀ x ∈ X}.

Definition
An ideal J in A is called regular if J = J⊥⊥.

Example
For a topological space X and open U ⊆ X, C0(U) is regular ⇐⇒ the
interior of U equals U (in this case, we say that U is regular).

Lemma
For a regular open U ⊆ G(0), we have Ĩ(U) = I(U)⊥⊥.
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Regular ideals

G has the regular intersection property if for any regular ideal I in
C∗

r (G), I ∩ C0(G(0)) = 0 implies I = 0.

Theorem (Li and Z, 2025+)
TFAE:

1 every regular ideal is ghostly;
2 U 7→ Ĩ(U) is a bijection between regular invariant open subsets of G(0)

and regular ideals in C∗
r (G);

3 for any regular ideal I, UI = VI ;
4 G has the regular intersection property.

(4) ⇒ (2) is proved by Brown, Fuller, Pitts and Reznikoff (2024).
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2 U 7→ Ĩ(U) is a bijection between regular invariant open subsets of G(0)

and regular ideals in C∗
r (G);

3 for any regular ideal I, UI = VI ;
4 G has the regular intersection property.

(4) ⇒ (2) is proved by Brown, Fuller, Pitts and Reznikoff (2024).

Jiawen Zhang Ideal structures of groupoid C∗-algebras 2025.06.13 25 / 28



Groups acting on its Furstenberg boundary

Let G be a discrete group, and X a G-boundary (i.e., a minimal and
strongly proximal compact Hausdorff space).

For x ∈ X, denote Gx := {g ∈ G : gx = x}. If Gx is amenable, we have
the trivial representation τx : C∗

r (Gx)→ C. Denote its kernel by Ix.

The Furstenberg boundary ∂FG is the universal G-boundary. ∀x ∈ ∂FG,
Gx is amenable. There is a c.c.p. map

ϑx,r : C(∂FG)⋊r G→ C∗
r (Gx),

and denote the induced ideal

Ind(Ix) := {x ∈ C(∂FG)⋊r G : ϑx,r(b
∗a∗ab) ∈ Ix, ∀ b ∈ C(∂FG)⋊r G}.
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Groups acting on its Furstenberg boundary

Theorem (Li and Z, 2025+)
Consider a discrete group G acting on its Furstenberg boundary ∂FG. Given
x ∈ ∂FG, TFAE:

1 the ideal Ind(Ix) in C(∂FG)⋊r G is ghostly;
2 VInd(Ix) 6= ∂FG;
3 Ind(Ix) = 0;
4 the action is (topologically) free.

Corollary
TFAE:

1 the Thompson’s group F is non-amenable;
2 the Thompson’s group T is C∗-simple;
3 the action of T on ∂FT is (topologically) free;
4 ∃x ∈ ∂FT such that Ind(Ix) is ghostly;
5 ∃x ∈ ∂FT such that VInd(Ix) = ∅.
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Thank you for your attention!
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