Example of Singular Reduction in Symplectic Diffeology

Patrick Iglesias-Zemmour
The Hebrew University of Jerusalem, Israel
Building-Up Differential Homotopy Theory 2024
March 5, 2024 - Osaka Metropolitan University, Japan

Proc. Amer. Math. Soc. (143):3, pp. 1309-1324 (2016).

The Context

Symplectic geometry There are two situations in which we need to improve symplectic geometry:

- Symplectic reduction in the presence of singularities
- Tnfinita dimanaional "stmmplactic" smaces

The reduction is defined on presymplectic manifolds or co-isotronic submanifolds. This is well documented when the reduction is regular, that is, when it does not involve singularities such that the reduced space is itself a manifold. For inninite "symplectic" spaces, what we have is a series on examples and heuristic constructions.

The Context

Symplectic geometry There are two situations in which we need to improve symplectic geometry:

- Symplectic reduction in the presence of singularities
- Infinite dimensional "symplectic" spaces

The reduction is defined on presymplectic manifolds or co-isotropic submanifolds. This is well documented when the reduction is regular, that is, when it does not involve singularities such that the reduced space is itself a manifold. For infinite "crmmlectic" annenc, what wer have ic a sorvice of examples and heuristic constructions.

The Context

Symplectic geometry There are two situations in which we need to improve symplectic geometry:

- Symplectic reduction in the presence of singularities
- Infinite dimensional "symplectic" spaces

The reduction is defined on presymplectic manifolds or co-isotropic submanifolds. This is well documented when the reduction is regular, that is, when it does not involve singularities such that the reduced space is itself a manifold. For infinite "symplectic" spaces, what we have is a series of examples and heuristic constructions.

The Context

Symplectic geometry There are two situations in which we need to improve symplectic geometry:

- Symplectic reduction in the presence of singularities
- Infinite dimensional "symplectic" spaces

The reduction is defined on presymplectic manifolds or co-isotropic submanifolds. This is well documented when the reduction is regular, that is, when it does not involve singularities such that the reduced space is itself a manifold.

For infinite "symplectic" spaces, what we have is a series of
examples and heuristic constructions.

The Context

Symplectic geometry There are two situations in which we need to improve symplectic geometry:

- Symplectic reduction in the presence of singularities
- Infinite dimensional "symplectic" spaces

The reduction is defined on presymplectic manifolds or co-isotropic submanifolds. This is well documented when the reduction is regular, that is, when it does not involve singularities such that the reduced space is itself a manifold.

For infinite "symplectic" spaces, what we have is a series of examples and heuristic constructions.

Classic References

- Symplectic Mechanics
"Structure des Systèmes Dynamiques" J.-M. Souriau, Dunod Editor (1969) Paris.
> "Reduction of Symplectic Manifolds with Symmetry" J. Marsden and A. Weinstein, Rep. Math. Phys. 5 (1974) pp. 121-130.

Classic References

- Symplectic Mechanics
"Structure des Systèmes Dynamiques" J.-M. Souriau, Dunod Editor (1969) Paris.
- Symplectic Reduction
"Reduction of Symplectic Manifolds with Symmetry"
J. Marsden and A. Weinstein, Rep. Math. Phys. 5 (1974), pp. 121-130.

The Examples I - Manifold

The geodesics of the sphere: They are the great circles of the sphere, obtained by reduction of the unit tangent bundle:

$$
\left\{\begin{array}{l}
(x, u) \in \mathrm{US}^{2} \\
x, u \in S^{2} \text { and }\langle x, u\rangle=0 \\
\ell=x \wedge u
\end{array}\right.
$$

- The space of geodesics: $\operatorname{Geod}\left(S^{2}\right)=\{\ell\}=S^{2}$, is a manifold.

The Examples I - Manifold

The geodesics of the sphere: They are the great circles of the sphere, obtained by reduction of the unit tangent bundle:

$$
\left\{\begin{array}{l}
(x, u) \in \mathrm{US}^{2} \\
x, u \in S^{2} \text { and }\langle x, u\rangle=0 \\
\ell=x \wedge u .
\end{array}\right.
$$

- The space of geodesics: $\operatorname{Geod}\left(S^{2}\right)=\{\ell\}=S^{2}$, is a manifold.

The Examples I - Manifold

The geodesics of the sphere: They are the great circles of the sphere, obtained by reduction of the unit tangent bundle:

$$
\left\{\begin{array}{l}
(x, u) \in \mathrm{US}^{2} \\
x, u \in \mathrm{~S}^{2} \text { and }\langle x, u\rangle=0 \\
\ell=x \wedge u .
\end{array}\right.
$$

- The space of geodesics: $\operatorname{Geod}\left(S^{2}\right)=\{\ell\}=S^{2}$, is a manifold.
- The symplectic struture: $\omega\left(\delta \ell, \delta^{\prime} \ell\right) \propto\left\langle\ell, \delta \ell \wedge \delta^{\prime} \ell\right\rangle$.

The Examples II - Not a manifold

The geodesics of the torus: They are the projections of the affine lines of the plane, also obtained by reduction of the unit tangent bundle:

fiber over u : the torus (rational or irrational) of slope u. $\operatorname{Geod}\left(T^{2}\right)=\{(u, \tau) \mid u=(\cos (\theta), \sin (\theta))$, $\theta \in \mathbf{R}, \tau \in \mathbf{R} / \cos (\theta) \mathbf{Z}+\sin (\theta) \mathbf{Z}\}$.

The Examples II - Not a manifold

The geodesics of the torus: They are the projections of the affine lines of the plane, also obtained by reduction of the unit tangent bundle:

- The space of geodesics: $\operatorname{Geod}\left(\mathrm{T}^{2}\right)$ is fibered over S^{1} with fiber over u : the torus (rational or irrational) of slope u.

$$
\begin{aligned}
\operatorname{Geod}\left(\mathrm{T}^{2}\right)=\{(u, \tau) \mid u & =(\cos (\theta), \sin (\theta)) \\
\theta & \in \mathbf{R}, \tau \in \mathbf{R} / \cos (\theta) \mathbf{Z}+\sin (\theta) \mathbf{Z}\}
\end{aligned}
$$

The Examples - II (continue)

Claim: The space $\operatorname{Geod}\left(\mathrm{T}^{2}\right)$ is not a manifold because of irrational tori, when $\cos (\theta)$ and $\sin (\theta)$ are independent over \mathbf{Q}. But, as a diffeological space:

Proposition: ${ }^{1}$ The space $\operatorname{Geod}\left(\mathrm{T}^{2}\right)$, quotient of the unit tangent bundle UT^{2}, is 2 -dimensional and admits a parasymplectic form (a closed 2-form), projection of th canonical presymplectic form on UT^{2}

> Note: As a differential space (Sikorski, Frölicher. . .), quotient of the unit tangent bundle $\mathrm{UT}^{2} . \operatorname{Geod}\left(\mathrm{T}^{2}\right)$ is 1-dimensional equivalent to the circle S^{1}, because of the irrational tori; and obviously has no non-zero 2-form.

[^0]
The Examples - II (continue)

Claim: The space $\operatorname{Geod}\left(\mathrm{T}^{2}\right)$ is not a manifold because of irrational tori, when $\cos (\theta)$ and $\sin (\theta)$ are independent over \mathbf{Q}. But, as a diffeological space:

Proposition: ${ }^{1}$ The space $\operatorname{Geod}\left(\mathrm{T}^{2}\right)$, quotient of the unit tangent bundle UT^{2}, is 2-dimensional and admits a parasymplectic form (a closed 2-form), projection of the canonical presymplectic form on UT^{2}.

Note: As a differential space (Sikorski, Frölicher...), quotient of the unit tangent bundle UT^{2}, Geod $\left(\mathrm{T}^{2}\right)$ is 1 -dimensional equivalent to the circle S^{1}, because of the irrational tori; and
\square
${ }^{1}$ In "Lectures on diffeology", Beijing WPC, 2024 (to appear).

The Examples - II (continue)

Claim: The space $\operatorname{Geod}\left(\mathrm{T}^{2}\right)$ is not a manifold because of irrational tori, when $\cos (\theta)$ and $\sin (\theta)$ are independent over \mathbf{Q}. But, as a diffeological space:

Proposition: ${ }^{1}$ The space $\operatorname{Geod}\left(\mathrm{T}^{2}\right)$, quotient of the unit tangent bundle UT^{2}, is 2-dimensional and admits a parasymplectic form (a closed 2-form), projection of the canonical presymplectic form on UT^{2}.

Note: As a differential space (Sikorski, Frölicher...), quotient of the unit tangent bundle UT^{2}, $\operatorname{Geod}\left(\mathrm{T}^{2}\right)$ is 1-dimensional equivalent to the circle S^{1}, because of the irrational tori; and obviously has no non-zero 2-form.

[^1]
Summary

With these two simple examples we can already conclude that:
> 1. Diffeology framework pushes the limits of symplectic structure bevond the classical boundaries. Snaces of geodesics that are usually symplectic when they are manifolds continue to host a natural parasymplectic structure even when thev are no more manifods.
> 2. Spaces of geodesics are the most common examples of "symplectic reductions", generally with singularities. Diffenlogy shows how to handle such sinonlar reductions in finite-dimensional context.
> 3. Differential space approach (Sikorski, Frölicher...) is insufficient.

Summary

With these two simple examples we can already conclude that:

1. Diffeology framework pushes the limits of symplectic structure beyond the classical boundaries. Spaces of geodesics that are usually symplectic when they are manifolds continue to host a natural parasymplectic structure even when they are no more manifods.
2. Spaces of geodesics are the most common examples of "symplectic reductions", generally with singularities. Diffeology shows how to handle such singular reductions in finite-dimensional context.
3. Differential space approach (Sikorski, Frölicher...) is insufficient.

Summary

With these two simple examples we can already conclude that:

1. Diffeology framework pushes the limits of symplectic structure beyond the classical boundaries. Spaces of geodesics that are usually symplectic when they are manifolds continue to host a natural parasymplectic structure even when they are no more manifods.
2. Spaces of geodesics are the most common examples of "symplectic reductions", generally with singularities. Diffeology shows how to handle such singular reductions in finite-dimensional context.
3. Differential space approach (Sikorski, Frölicher...) is insufficient

Summary

With these two simple examples we can already conclude that:

1. Diffeology framework pushes the limits of symplectic structure beyond the classical boundaries. Spaces of geodesics that are usually symplectic when they are manifolds continue to host a natural parasymplectic structure even when they are no more manifods.
2. Spaces of geodesics are the most common examples of "symplectic reductions", generally with singularities. Diffeology shows how to handle such singular reductions in finite-dimensional context.
3. Differential space approach (Sikorski, Frölicher...) is insufficient.

Diffeology References

－Original Paper：The Axiomatic
＂Groupes différentiels＂．Jean－Marie Souriau．Lecture notes in mathematics，vol． 836 （1980）pp．91－128．
> ＂Diffeology＂．Patrick Iglesias－Zemmour．Mathematical Surveys and Monographs vol． 185 （2013），Am．Math．Soc． ＂Diffeology — 广义微分几何＂．Same author．Beijing World Publication Corp．（2022）．Can be found at https：／／eastred．jp／ja－285869－9787519296087

Diffeology References

－Original Paper：The Axiomatic
＂Groupes différentiels＂．Jean－Marie Souriau．Lecture notes in mathematics，vol． 836 （1980）pp．91－128．
－The AMS Textbook
＂Diffeology＂．Patrick Iglesias－Zemmour．Mathematical Surveys and Monographs vol． 185 （2013），Am．Math．Soc．
> ＂Diffeology — 广义微分几何＂．Same author．Beijing World
> Publication Corp．（2022）．Can be found at
> https：／／eastred．jp／ja－285869－9787519296087

Diffeology References

－Original Paper：The Axiomatic
＂Groupes différentiels＂．Jean－Marie Souriau．Lecture notes in mathematics，vol． 836 （1980）pp．91－128．
－The AMS Textbook
＂Diffeology＂．Patrick Iglesias－Zemmour．Mathematical Surveys and Monographs vol． 185 （2013），Am．Math．Soc．
－The Beijing WPC Revised Reprint of the Textbook
＂Diffeology — 广义微分几何＂．Same author．Beijing World Publication Corp．（2022）．Can be found at https：／／eastred．jp／ja－285869－9787519296087

The Next Step

Among irregular situations for symplectic reduction, two cases apnear freauently in mathematics or in phvsics:

- The symplectic space is infinite dimensional, for example a snhere S^{∞} in an infinite dimensional Hilbert snace.
- The reduction has singularities, for example some orbits are infinite lines and other are circles.

We shall show how these questions continue to be solved in the framework of diffenloov. It is a narticular examnle of the construction of an infinite dimensional quasiprojective space, that mixes the two situations.

The Next Step

Among irregular situations for symplectic reduction, two cases appear frequently in mathematics or in physics:

- The symplectic space is infinite dimensional, for example a snhere S^{∞} in an infinite dimensional Hilhert snace
- The reduction has singularities, for example some orbits are infinite lines and other are circles.

We shall show how these questions continue to be solved in the framewnork of diffenlnov. It is a narticular examnle of the construction of an infinite dimensional quasiprojective space, that mixes the two situations.

The Next Step

Among irregular situations for symplectic reduction, two cases appear frequently in mathematics or in physics:

- The symplectic space is infinite dimensional, for example a sphere S^{∞} in an infinite dimensional Hilbert space.
- The reduction has singularities, for example some orbits are infinite lines and other are circles.

We shall show how these questions continue to be solved in the framework of diffeology. It is a particular example of the construction of an infinite dimensional quasiprojective space. that mixes the two situations.

The Next Step

Among irregular situations for symplectic reduction, two cases appear frequently in mathematics or in physics:

- The symplectic space is infinite dimensional, for example a sphere S^{∞} in an infinite dimensional Hilbert space.
- The reduction has singularities, for example some orbits are infinite lines and other are circles.

We shall show how these questions continue to be solved in the framework of diffeology. It is a particular example of the construction of an infinite dimensional quasiprojective space, that mixes the two situations.

The Next Step

Among irregular situations for symplectic reduction, two cases appear frequently in mathematics or in physics:

- The symplectic space is infinite dimensional, for example a sphere S^{∞} in an infinite dimensional Hilbert space.
- The reduction has singularities, for example some orbits are infinite lines and other are circles.

We shall show how these questions continue to be solved in the framework of diffeology. It is a particular example of the construction of an infinite dimensional quasiprojective space, that mixes the two situations.
A diffeology is a smooth structure defined by means of parametrizations:

- A parametrization in a set X is any map $P: U \rightarrow X$, defined on some open subset of some Euclidean space \mathbf{R}^{n}
A aimeology on a set X is denined as a set \mathcal{D} or
parametrizations, called plots, that satisfies three axioms:
- Covering The set \mathcal{D} contains the constant parametrizations.
- Locality A parametrization which belongs locally to \mathcal{D} belongs globally to \mathcal{D}
- Smooth Compatibility The composite of any element of \mathcal{D} by a smooth parametrization of its domain belongs to \mathcal{D}.
A diffeological space is a set X equiped with a diffeology D.

What is a Diffeology, for those who don't know yet

A diffeology is a smooth structure defined by means of parametrizations:
on some open subset of some Euclidean space \mathbf{R}^{n} A diffeoloun on a set V :s defined as a set 1 D of parametrizations, called plots, that satisfies three axioms: - Locality A parametrization which belongs locally to \mathcal{D} belongs globally to \mathcal{D}. by a smooth parametrization of its domain belongs to \mathcal{D}.

What is a Diffeology, for those who don't know yet

A diffeology is a smooth structure defined by means of parametrizations:

- A parametrization in a set X is any map $\mathrm{P}: \mathrm{U} \rightarrow \mathrm{X}$, defined on some open subset of some Euclidean space \mathbf{R}^{n}. A diffeology on a set X is defined as a set \mathcal{D} of parametrizations, called plots, that satisfies three axioms: - Couruing mhe set (D) contains the constant parametrizations - Locality A parametrization which belongs locally to \mathcal{D} belongs globally to \mathcal{D}. by a smooth parametrization of its domain belongs to \mathcal{D}.

What is a Diffeology, for those who don't know yet

A diffeology is a smooth structure defined by means of parametrizations:

- A parametrization in a set X is any map $P: U \rightarrow X$, defined on some open subset of some Euclidean space \mathbf{R}^{n}.

A diffeology on a set X is defined as a set \mathcal{D} of parametrizations, called plots, that satisfies three axioms:

What is a Diffeology, for those who don't know yet

A diffeology is a smooth structure defined by means of parametrizations:

- A parametrization in a set X is any map $P: U \rightarrow X$, defined on some open subset of some Euclidean space \mathbf{R}^{n}.

A diffeology on a set X is defined as a set \mathcal{D} of parametrizations, called plots, that satisfies three axioms:

- Covering The set \mathcal{D} contains the constant parametrizations.
belongs globally to \mathcal{D}.
- Smooth Compatibility The composite of any element of \mathcal{D} by a smooth parametrization of its domain belongs to \mathcal{D}.
\square

What is a Diffeology, for those who don't know yet

A diffeology is a smooth structure defined by means of parametrizations:

- A parametrization in a set X is any map $\mathrm{P}: \mathrm{U} \rightarrow \mathrm{X}$, defined on some open subset of some Euclidean space \mathbf{R}^{n}.

A diffeology on a set X is defined as a set \mathcal{D} of parametrizations, called plots, that satisfies three axioms:

- Covering The set \mathcal{D} contains the constant parametrizations.
- Locality A parametrization which belongs locally to \mathcal{D} belongs globally to \mathcal{D}.

A diffeological space is a set X equiped with a diffeology \mathcal{D}

What is a Diffeology, for those who don't know yet

A diffeology is a smooth structure defined by means of parametrizations:

- A parametrization in a set X is any map $\mathrm{P}: \mathrm{U} \rightarrow \mathrm{X}$, defined on some open subset of some Euclidean space \mathbf{R}^{n}.

A diffeology on a set X is defined as a set \mathcal{D} of parametrizations, called plots, that satisfies three axioms:

- Covering The set \mathcal{D} contains the constant parametrizations.
- Locality A parametrization which belongs locally to \mathcal{D} belongs globally to \mathcal{D}.
- Smooth Compatibility The composite of any element of \mathcal{D} by a smooth parametrization of its domain belongs to \mathcal{D}.

What is a Diffeology, for those who don't know yet

A diffeology is a smooth structure defined by means of parametrizations:

- A parametrization in a set X is any map $\mathrm{P}: \mathrm{U} \rightarrow \mathrm{X}$, defined on some open subset of some Euclidean space \mathbf{R}^{n}.

A diffeology on a set X is defined as a set \mathcal{D} of parametrizations, called plots, that satisfies three axioms:

- Covering The set \mathcal{D} contains the constant parametrizations.
- Locality A parametrization which belongs locally to \mathcal{D} belongs globally to \mathcal{D}.
- Smooth Compatibility The composite of any element of \mathcal{D} by a smooth parametrization of its domain belongs to \mathcal{D}.

A diffeological space is a set X equiped with a diffeology \mathcal{D}.

Category \{Diffeology\}

Diffeological spaces are the objects of the category \{Diffeology\}, whose morphisms are the smooth maps:

- A smooth map from a difmeological space X to another X' is any map $f: X \rightarrow X^{\prime}$ such that $f \circ P \in \mathcal{D}^{\prime}$ for all $P \in \mathcal{D}$.

Smooth maps are denoted by $\mathcal{C}^{\infty}\left(\mathrm{X}, \mathrm{X}^{\prime}\right)$.
The isomory hisms are called diff omomplins, they are bijective smooth maps as well as their inverse.

Category \{Diffeology\} is stable by any set theoretic operation:

$$
\begin{array}{llll}
\text { - Sum } & X=\coprod_{i} X_{i} . & \bullet \text { Product } & X=\prod_{i} X_{i} \\
\text { - Subset } & X \subset X^{\prime} . & \bullet \text { Quotient } & X=X^{\prime} / \sim \text {. }
\end{array}
$$

Category \{Diffeology\}

Diffeological spaces are the objects of the category \{Diffeology\}, whose morphisms are the smooth maps:

Category \{Diffeology\}

Diffeological spaces are the objects of the category \{Diffeology\}, whose morphisms are the smooth maps:

- A smooth map from a diffeological space X to another X^{\prime}, is any map $f: X \rightarrow X^{\prime}$ such that $f \circ P \in \mathcal{D}^{\prime}$ for all $P \in \mathcal{D}$. Smooth maps are denoted by $\mathcal{C}^{\infty}\left(\mathrm{X}, \mathrm{X}^{\prime}\right)$.

The isomorphisms are called diffeomorphisms, they are bijective smooth maps as well as their inverse.

Categoury \{n:ffeolomy $\}$ is stable by any set theoretic operation:

Category \{Diffeology\}

Diffeological spaces are the objects of the category \{Diffeology\}, whose morphisms are the smooth maps:

- A smooth map from a diffeological space X to another X^{\prime}, is any map $f: X \rightarrow X^{\prime}$ such that $f \circ P \in \mathcal{D}^{\prime}$ for all $P \in \mathcal{D}$. Smooth maps are denoted by $\mathcal{C}^{\infty}\left(\mathrm{X}, \mathrm{X}^{\prime}\right)$.

The isomorphisms are called diffeomorphisms, they are bijective smooth maps as well as their inverse.

Category \{Diffeology\} is stable by any set theoretic operation:

Category \{Diffeology\}

Diffeological spaces are the objects of the category \{Diffeology\}, whose morphisms are the smooth maps:

- A smooth map from a diffeological space X to another X^{\prime}, is any map $f: X \rightarrow X^{\prime}$ such that $f \circ P \in \mathcal{D}^{\prime}$ for all $P \in \mathcal{D}$.

Smooth maps are denoted by $\mathcal{C}^{\infty}\left(\mathrm{X}, \mathrm{X}^{\prime}\right)$.
The isomorphisms are called diffeomorphisms, they are bijective smooth maps as well as their inverse.

Category \{Diffeology\} is stable by any set theoretic operation:

- Sum $X=\coprod_{i} X_{i}$. Product $X=\prod_{i} X_{i}$.
- Subset $\mathrm{X} \subset \mathrm{X}^{\prime}$. Quotient $\mathrm{X}=\mathrm{X}^{\prime} / \sim$.

Quotient Spaces

A striking and important construction is the quotient diffeology, for any kind of partition:

Let ~ be any equivalence relation on a diffeological space X. that is, a partition of X. We can push forward the diffeology of X onto the cuntient set $\mathrm{Q}=\mathrm{X} / \sim$, by the natural mroiection class: $\mathrm{X} \rightarrow \mathrm{Q}$.

A plot of this quotient diffeology is any parametrization $P: U \rightarrow Q$ such that evervwhere:

$$
\mathrm{P} \underset{\mathrm{loc}}{=} \text { class } \circ \mathrm{R}
$$

where R is some plot of X and the suffix loc means that R is reamired only locally.

Quotient Spaces

A striking and important construction is the quotient diffeology, for any kind of partition:

Let \sim be any equivalence relation on a diffeological space X , that is, a partition of X . We can push forward the diffeology of X onto the quotient set $\mathrm{Q}=\mathrm{X} / \sim$, by the natural projection class: $\mathrm{X} \rightarrow \mathrm{Q}$.

A plot of this quotient diffeology is any parametrization $\mathrm{P}: \mathrm{U} \rightarrow \mathrm{Q}$ such that everywhere: $\mathrm{P} \underset{\text { loc }}{=}$ class $\circ \mathrm{R}$,
where R is some plot of X and the suffix 1 .o means that R is required only locally.

Quotient Spaces

A striking and important construction is the quotient diffeology, for any kind of partition:

Let \sim be any equivalence relation on a diffeological space X , that is, a partition of X . We can push forward the diffeology of X onto the quotient set $\mathrm{Q}=\mathrm{X} / \sim$, by the natural projection class: $\mathrm{X} \rightarrow \mathrm{Q}$.

A plot of this quotient diffeology is any parametrization
$\mathrm{P}: \mathrm{U} \rightarrow \mathrm{Q}$ such that everywhere:
$\mathrm{P} \underset{\text { loc }}{=}$ class $\circ \mathrm{R}$,
where R is some plot of X and the suffix loc means that R is required only locally.

Quotient Spaces

A striking and important construction is the quotient diffeology, for any kind of partition:

Let \sim be any equivalence relation on a diffeological space X , that is, a partition of X . We can push forward the diffeology of X onto the quotient set $\mathrm{Q}=\mathrm{X} / \sim$, by the natural projection class: $\mathrm{X} \rightarrow \mathrm{Q}$.

A plot of this quotient diffeology is any parametrization $P: U \rightarrow Q$ such that everywhere:

$$
\mathrm{P} \underset{\mathrm{loc}}{=} \text { class } \circ \mathrm{R},
$$

where R is some plot of X and the suffix loc means that R is required only locally.

Subduction

Differential Forms

A differential k-form α on a diffeological space X is defined by its pullbacks $\mathrm{P}^{*}(\alpha)$ by the plots P in X .

Drecioaly, α is any manning

$$
\alpha: \mathrm{P} \mapsto \alpha(\mathrm{P}) \in \Omega^{\mathrm{k}}(\mathrm{U}),
$$

for all plots

$$
\mathrm{P}: \mathrm{U} \rightarrow \mathrm{X} .
$$

Satisfying, for all smooth parametrization $F: V \rightarrow U$, the following chain rule:

$$
\alpha(\mathrm{P} \circ \mathrm{~F})=\mathrm{F}^{*}(\alpha(\mathrm{P})) .
$$

Differential Forms

A differential k-form α on a diffeological space X is defined by its pullbacks $\mathrm{P}^{*}(\alpha)$ by the plots P in X .

Precisely, α is any mapping

$$
\alpha: P \mapsto \alpha(\mathrm{P}) \in \Omega^{k}(\mathrm{U}),
$$

for all plots

Satisfying, for all smooth parametrization $F: V \rightarrow U$, the
following chain rule:

Differential Forms

A differential k-form α on a diffeological space X is defined by its pullbacks $\mathrm{P}^{*}(\alpha)$ by the plots P in X .

Precisely, α is any mapping

$$
\alpha: \mathrm{P} \mapsto \alpha(\mathrm{P}) \in \Omega^{\mathrm{k}}(\mathrm{U}),
$$

for all plots

$$
\mathrm{P}: \mathrm{U} \rightarrow \mathrm{X}
$$

Satisfying, for all smooth parametrization $F: V \rightarrow U$, the
following chain rule:
$\alpha(\mathrm{P} \circ \mathrm{F})=\mathrm{F}^{*}(\alpha(\mathrm{P}))$.

Differential Forms

A differential k-form α on a diffeological space X is defined by its pullbacks $\mathrm{P}^{*}(\alpha)$ by the plots P in X .

Precisely, α is any mapping

$$
\alpha: \mathrm{P} \mapsto \alpha(\mathrm{P}) \in \Omega^{\mathrm{k}}(\mathrm{U}),
$$

for all plots

$$
\mathrm{P}: \mathrm{U} \rightarrow \mathrm{X}
$$

Satisfying, for all smooth parametrization $F: V \rightarrow U$, the following chain rule:

$$
\alpha(\mathrm{P} \circ \mathrm{~F})=\mathrm{F}^{*}(\alpha(\mathrm{P})) .
$$

Differential Forms

A differential k-form α on a diffeological space X is defined by its pullbacks $\mathrm{P}^{*}(\alpha)$ by the plots P in X .

Precisely, α is any mapping

$$
\alpha: \mathrm{P} \mapsto \alpha(\mathrm{P}) \in \Omega^{\mathrm{k}}(\mathrm{U}),
$$

for all plots

$$
\mathrm{P}: \mathrm{U} \rightarrow \mathrm{X}
$$

Satisfying, for all smooth parametrization $F: V \rightarrow U$, the following chain rule:

$$
\alpha(\mathrm{P} \circ \mathrm{~F})=\mathrm{F}^{*}(\alpha(\mathrm{P})) .
$$

Exterior Derivative

The exterior derivative of a k-form is given by:

$$
\mathrm{d} \alpha(\mathrm{P})=\mathrm{d}[\alpha(\mathrm{P})]
$$

With

$$
d: \Omega^{k}(X) \rightarrow \Omega^{k+1}(X) \quad \text { and } \quad d \circ d=0
$$

That defines a De Rham Complex for every diffeological space.

Exterior Derivative

The exterior derivative of a k -form is given by:

$$
\mathrm{d} \alpha(\mathrm{P})=\mathrm{d}[\alpha(\mathrm{P})]
$$

With

$$
\mathrm{d}: \Omega^{\mathrm{k}}(\mathrm{X}) \rightarrow \Omega^{\mathrm{k}+1}(\mathrm{X}) \quad \text { and } \quad \mathrm{d} \circ \mathrm{~d}=0
$$

That defines a De Rham Complex for every diffeological space.

Exterior Derivative

The exterior derivative of a k -form is given by:

$$
\mathrm{d} \alpha(\mathrm{P})=\mathrm{d}[\alpha(\mathrm{P})]
$$

With

$$
\mathrm{d}: \Omega^{\mathrm{k}}(\mathrm{X}) \rightarrow \Omega^{\mathrm{k}+1}(\mathrm{X}) \quad \text { and } \quad \mathrm{d} \circ \mathrm{~d}=0
$$

That defines a De Rham Complex for every diffeological space.

$$
\mathrm{H}_{\mathrm{DR}}^{\mathrm{k}}(\mathrm{X})=\operatorname{ker}\left[\mathrm{d}: \Omega^{\mathrm{k}}(\mathrm{X}) \rightarrow \Omega^{\mathrm{k}+1}(\mathrm{X})\right] / \mathrm{d}\left[\Omega^{\mathrm{k}-1}(\mathrm{X})\right] .
$$

Pullbacks

$$
\begin{aligned}
& \text { Let } X \text { and } X^{\prime} \text { be two diffeological spaces. Let } \\
& \qquad f: X \rightarrow X^{\prime} \\
& \text { be a smooth map and } \alpha^{\prime} \in \Omega^{k}\left(X^{\prime}\right) \text {. } \\
& \text { The pullback } \alpha=f^{*}\left(\alpha^{\prime}\right) \text { is defined by } \\
& \qquad \alpha(P)=\alpha^{\prime}(f \circ P), \quad \alpha \in \Omega^{k}(X)
\end{aligned}
$$

Pullbacks

Let X and X^{\prime} be two diffeological spaces. Let

$$
f: X \rightarrow X^{\prime}
$$

be a smooth map and $\alpha^{\prime} \in \Omega^{k}\left(\mathrm{X}^{\prime}\right)$.
The pullback $\alpha=f^{*}\left(\alpha^{\prime}\right)$ is defined by

Pullbacks

Let X and X^{\prime} be two diffeological spaces. Let

$$
f: X \rightarrow X^{\prime}
$$

be a smooth map and $\alpha^{\prime} \in \Omega^{k}\left(\mathrm{X}^{\prime}\right)$.
The pullback $\alpha=f^{*}\left(\alpha^{\prime}\right)$ is defined by

$$
\alpha(P)=\alpha^{\prime}(f \circ P), \quad \alpha \in \Omega^{k}(X)
$$

Pushing Forms onto Quotients

Deciding if a differential form comes from a quotient is a
recurrent question in diffeologv.
Let X be a diffeological space and

be a projection onto a quotient, and let $\alpha \in \Omega^{k}(X)$.
Gimbrion There exists $\beta \in \Omega^{2}(Q)$ such that $\alpha=\pi^{*}(\beta)$ if and only if, for all plots P and P^{\prime} in X ,

$$
\pi \circ \mathrm{P}=\pi \circ \mathrm{P}^{\prime} \quad \Rightarrow \quad \alpha(\mathrm{P})=\alpha\left(\mathrm{P}^{\prime}\right)
$$

Pushing Forms onto Quotients

Deciding if a differential form comes from a quotient is a recurrent question in diffeology.

Let X be a diffeological space and
\qquad
be a projection onto a quotient, and let $\alpha \in \Omega^{k}(X)$
Grimerion There exists $\beta \in \Omega^{-k}(Q)$ such that $\alpha=\pi^{*}(\beta)$ if and only if, for all plots P and P^{\prime} in X ,

Pushing Forms onto Quotients

Deciding if a differential form comes from a quotient is a recurrent question in diffeology.

Let X be a diffeological space and

$$
\pi: \mathrm{X} \rightarrow \mathrm{Q}
$$

be a projection onto a quotient, and let $\alpha \in \Omega^{k}(X)$.
Criterion There exists $\beta \in \Omega^{k}(Q)$ such that $\alpha=\pi^{*}(\beta)$ if and only if, for all plots P and P^{\prime} in X ,

Pushing Forms onto Quotients

Deciding if a differential form comes from a quotient is a recurrent question in diffeology.

Let X be a diffeological space and

$$
\pi: \mathrm{X} \rightarrow \mathrm{Q}
$$

be a projection onto a quotient, and let $\alpha \in \Omega^{k}(\mathrm{X})$.
Criterion There exists $\beta \in \Omega^{k}(Q)$ such that $\alpha=\pi^{*}(\beta)$ if and only if, for all plots P and P^{\prime} in X ,

$\alpha(\mathrm{P})=\alpha\left(\mathrm{P}^{\prime}\right)$.

Pushing Forms onto Quotients

Deciding if a differential form comes from a quotient is a recurrent question in diffeology.

Let X be a diffeological space and

$$
\pi: \mathrm{X} \rightarrow \mathrm{Q}
$$

be a projection onto a quotient, and let $\alpha \in \Omega^{k}(\mathrm{X})$.
Criterion There exists $\beta \in \Omega^{k}(\mathrm{Q})$ such that $\alpha=\pi^{*}(\beta)$ if and only if, for all plots P and P^{\prime} in X ,

$$
\pi \circ \mathrm{P}=\pi \circ \mathrm{P}^{\prime} \quad \Rightarrow \quad \alpha(\mathrm{P})=\alpha\left(\mathrm{P}^{\prime}\right)
$$

Functional Diffeology on Complex Periodic Functions

Let X and X^{\prime} be two diffeological spaces, $\mathrm{C}^{\infty}\left(\mathrm{X}, \mathrm{X}^{\prime}\right)$ carries a natural diffeology called the functional diffeology The plots are the parametrizations $\mathrm{r} \boldsymbol{\mathrm { F }} \mathrm{f}$, defmed on some Euclidean domain U such that

That diffeology makes the category Cartesian closed.
The space Wuc will consider in the following is the space od complex periodic functions

equipped with the functional diffeology.

Functional Diffeology on Complex Periodic Functions

Let X and X^{\prime} be two diffeological spaces, $\mathcal{C}^{\infty}\left(\mathrm{X}, \mathrm{X}^{\prime}\right)$ carries a natural diffeology called the functional diffeology.

The plots are the parametrizations $\mathrm{r} \mapsto \mathrm{f}_{\mathrm{r}}$, defined on some Euclidean domain U such that

That diffeology makes the category Cartesian closed. The space We will consider in the following is the space od complex periodic functions

equipped with the functional diffeology.

Functional Diffeology on Complex Periodic Functions

Let X and X^{\prime} be two diffeological spaces, $\mathrm{C}^{\infty}\left(\mathrm{X}, \mathrm{X}^{\prime}\right)$ carries a natural diffeology called the functional diffeology.

The plots are the parametrizations $\mathrm{r} \mapsto \mathrm{f}_{\mathrm{r}}$, defined on some
Euclidean domain U such that

$$
\left[(r, x) \mapsto f_{r}(x)\right] \in C^{\infty}\left(U \times X, X^{\prime}\right)
$$

That diffeology makes the category Cartesian closed.
The space we will consider in the following is the space od
complex periodic functions

$$
C_{\text {per }}^{\infty}(R, C)=\left\{f \in C^{\infty}(R, C) \mid f(x+1)=f(x)\right\},
$$

equipped with the functional diffeology.

Functional Diffeology on Complex Periodic Functions

Let X and X^{\prime} be two diffeological spaces, $\mathrm{C}^{\infty}\left(\mathrm{X}, \mathrm{X}^{\prime}\right)$ carries a natural diffeology called the functional diffeology.

The plots are the parametrizations $\mathrm{r} \mapsto \mathrm{f}_{\mathrm{r}}$, defined on some
Euclidean domain U such that

$$
\left[(r, x) \mapsto f_{r}(x)\right] \in C^{\infty}\left(U \times X, X^{\prime}\right)
$$

That diffeology makes the category Cartesian closed.
The space we will consider in the following is the space od complex periodic functions

$$
\mathrm{C}_{\mathrm{per}}^{\infty}(\mathbf{R}, \mathbf{C})=\left\{\mathbf{f} \in \mathrm{C}^{\infty}(\mathbf{R}, \mathbf{C}) \mid \mathbf{f}(x+1)=\mathbf{f}(\mathrm{x})\right\}
$$

equipped with the functional diffeology.

First, Fourier Transform

For all f in $C_{\text {per }}^{\infty}(\mathbb{R}, C)$, we associate the sequence of its Fourier coefficients $\left(f_{n}\right)_{n \in Z}$

$$
f_{n}=\int_{0}^{1} f(x) e^{-2 i \pi n x} d x, \quad \forall n \in \mathbb{Z}
$$

The image of $f \mapsto\left(f_{n}\right)_{n \in Z}$ is the vector space \mathcal{E} of rapidly decreasing infinite complex series

$$
\mathcal{E}=\left\{\left(f_{n}\right)_{n \in Z} \mid f_{n} \in C \& \forall p \in N, n^{p} f_{n} \xrightarrow[|n| \rightarrow \infty]{ } 0\right\}
$$

We push the functional diffeology on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$ to \mathcal{E}. A plot $r \mapsto f_{r}$ will give a plot of \mathcal{E}
$r \mapsto\left(f_{n}(r)\right)_{n \in Z} \quad$ with $\quad f_{n}(r)=\int_{0}^{1} f_{r}(x) e^{-2 i \pi n x} d x, \forall n \in Z$.

First, Fourier Transform

For all f in $C_{p e r}^{\infty}(\mathbf{R}, \mathbf{C})$, we associate the sequence of its Fourier coefficients $\left(f_{n}\right)_{n \in Z}$

$$
f_{n}=\int_{0}^{1} f(x) e^{-2 i \pi n x} d x, \forall n \in \mathbf{Z}
$$

The image of $\mathrm{f} \mapsto\left(f_{n}\right)_{n \in Z}$ is the vector space \mathcal{E} of rapidly
decreasing infinite complex series

$$
c=\left\{\left(r_{n}\right){ }_{n \in z} \mid r_{n} \in C \propto V p \in N, n^{p} f_{n} \xrightarrow[|n| \longrightarrow \infty]{ } 0\right\} \text {. }
$$

We push the functional diffeology on $\mathrm{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$ to \mathcal{E}. A plot $r \mapsto f_{r}$ will give a plot of \mathcal{E}
with $f_{n}(r)=\int_{0}^{1} f_{r}(x) e^{-2 i \pi n x} d x, \quad \forall n \in \mathbb{Z}$.

First, Fourier Transform

For all f in $C_{p e r}^{\infty}(\mathbf{R}, \mathbf{C})$, we associate the sequence of its Fourier coefficients $\left(f_{n}\right)_{n \in Z}$

$$
\mathrm{f}_{\mathrm{n}}=\int_{0}^{1} \mathrm{f}(x) e^{-2 i \pi n x} d x, \quad \forall \mathrm{n} \in \mathbf{Z}
$$

The image of $f \mapsto\left(f_{n}\right)_{n \in Z}$ is the vector space \mathcal{E} of rapidly decreasing infinite complex series

$$
\mathcal{E}=\left\{\left(f_{n}\right)_{n \in Z} \mid f_{n} \in C \& \forall p \in N, n^{p} f_{n} \xrightarrow[|n| \rightarrow \infty]{ } 0\right\}
$$

We push the functional diffeology on $\mathrm{C}_{\text {per }}^{\infty}(\mathrm{R}, \mathrm{C})$ to \mathcal{E}. A plot
$\mathrm{r} \mapsto \mathrm{f}_{\mathrm{r}}$ will give a plot of \mathcal{E}
$r \mapsto\left(f_{n}(r)\right)_{n \in Z} \quad$ with $\quad f_{n}(r)=\int_{0}^{1} f_{r}(x) e^{-2 i \pi n x} d x, \forall n \in Z$.

First, Fourier Transform

For all f in $C_{p e r}^{\infty}(\mathbf{R}, \mathbf{C})$, we associate the sequence of its Fourier coefficients $\left(f_{n}\right)_{n \in Z}$

$$
\mathrm{f}_{\mathrm{n}}=\int_{0}^{1} \mathrm{f}(x) e^{-2 i \pi n x} d x, \quad \forall \mathrm{n} \in \mathbf{Z}
$$

The image of $f \mapsto\left(f_{n}\right)_{n \in Z}$ is the vector space \mathcal{E} of rapidly decreasing infinite complex series

$$
\mathcal{E}=\left\{\left(f_{n}\right)_{n \in Z} \mid f_{n} \in \mathbf{C} \& \forall p \in N, n^{p} f_{n} \xrightarrow[|n| \rightarrow \infty]{ } 0\right\}
$$

We push the functional diffeology on $\mathrm{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$ to \mathcal{E}. A plot $\mathrm{r} \mapsto \mathrm{f}_{\mathrm{r}}$ will give a plot of \mathcal{E}

$$
r \mapsto\left(f_{n}(r)\right)_{n \in Z} \quad \text { with } \quad f_{n}(r)=\int_{0}^{1} f_{r}(x) e^{-2 i \pi n x} d x, \forall n \in \mathbf{Z}
$$

Functional Diffeology on Fourier Coefficients - I

Functional Diffeology on Fourier Coefficients - I

How to recognize a family $\left(f_{\mathfrak{n}}(r)\right)_{n \in Z}$ of smooth parametrizations in \mathbf{C} coming from $\mathrm{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$?
plot, for the pushforward of the functional diffeology on $C_{\text {nar }}^{\infty}(\mathbf{R}, \mathbf{C})$, if and only if:

1. The functions $f_{n}: \operatorname{dom}(P) \rightarrow C$ are smooth.
2. For all closed ball $\overline{\mathcal{B}} \subset \operatorname{dom}(P)$, for every $k \in \mathbf{N}$, for all $p \in \mathbf{N}$, there exists a positive number $\mathrm{M}_{\mathrm{k}, n}$ such that, for all integer $n \neq 0$,

Functional Diffeology on Fourier Coefficients - I

How to recognize a family $\left(f_{n}(r)\right)_{n \in Z}$ of smooth parametrizations in \mathbf{C} coming from $\mathrm{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$?

Theorem. A parametrizations $\mathrm{P}: \mathrm{r} \mapsto\left(\mathrm{f}_{\mathrm{n}}(\mathrm{r})\right)_{\mathrm{n} \in \mathrm{Z}}$ in \mathcal{E} is a plot, for the pushforward of the functional diffeology on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$, if and only if:
> 1. The functions $f_{n}: \operatorname{dom}(P) \rightarrow C$ are smooth.
> 2. For all closed ball $\overline{\mathcal{B}} \subset \operatorname{dom}(P)$, for every $k \in \mathbf{N}$, for all
> $p \in \mathbf{N}$, there exists a positive number $\mathrm{M}_{\mathrm{k}, n}$ such that, for
> all integer $n \neq 0$,

Functional Diffeology on Fourier Coefficients - I

How to recognize a family $\left(f_{\mathfrak{n}}(r)\right)_{n \in Z}$ of smooth parametrizations in \mathbf{C} coming from $\mathrm{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$?

Theorem. A parametrizations $\mathrm{P}: \mathrm{r} \mapsto\left(\mathrm{f}_{\mathrm{n}}(\mathrm{r})\right)_{\mathrm{n} \in \mathrm{Z}}$ in \mathcal{E} is a plot, for the pushforward of the functional diffeology on $\mathrm{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$, if and only if:

1. The functions $\mathrm{f}_{\mathrm{n}}: \operatorname{dom}(\mathrm{P}) \rightarrow \mathbf{C}$ are smooth.
2. For all closed ball $\overline{\mathcal{B}} \subset \operatorname{dom}(P)$, for every $k \in N$, for all
$p \in N$, there exists a positive number $M_{k, p}$ such that, for
all integer $\mathrm{n} \neq 0$,

for all $r \in \mathcal{B}$.

Functional Diffeology on Fourier Coefficients - I

How to recognize a family $\left(f_{\mathfrak{n}}(r)\right)_{n \in Z}$ of smooth parametrizations in \mathbf{C} coming from $\mathrm{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$?

Theorem. A parametrizations $\mathrm{P}: \mathrm{r} \mapsto\left(\mathrm{f}_{\mathrm{n}}(\mathrm{r})\right)_{\mathrm{n} \in \mathrm{Z}}$ in \mathcal{E} is a plot, for the pushforward of the functional diffeology on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$, if and only if:

1. The functions $f_{n}: \operatorname{dom}(P) \rightarrow \mathbf{C}$ are smooth.
2. For all closed ball $\overline{\mathcal{B}} \subset \operatorname{dom}(\mathrm{P})$, for every $k \in \mathbf{N}$, for all $p \in \mathbf{N}$, there exists a positive number $\mathrm{M}_{\mathrm{k}, \mathrm{p}}$ such that, for all integer $n \neq 0$,

$$
\left|\frac{\partial^{k} f_{n}(r)}{\partial r^{k}}\right| \leq \frac{M_{k, p}}{|n|^{p}} \quad \text { for all } r \in \mathcal{B}
$$

Functional Diffeology on Fourier Coefficients - II

$$
\begin{aligned}
& \text { REMARK 1. In other words, the parametrization } r \mapsto\left(f_{n}(r)\right)_{n \in Z} \\
& \text { is a plot of this diffeology if the functions } f_{n} \text { are smooth and } \\
& \text { their derivatives are uniformly rapidly decreasing: } \\
& \qquad n^{p} \frac{\partial^{k} f_{n}(r)}{\partial r^{k}} \xrightarrow[|n| \rightarrow \infty]{ } 0 \text {, for all } p \in N \text {. } \\
& \text { REMARK 2. By compactness, it is enough that, for every point } \\
& r_{0} \in \operatorname{dom}(P) \text {, there exists a ball } \mathcal{B}^{\prime} \text { centered at } r_{0} \text { such that }(\diamond) \\
& \text { holds to ensure that }(\diamond) \text { holds on every closed ball } \overline{\mathcal{B}} \subset \text { dom }(P) \text {. } \\
& \text { REMARK } 3 \text {. This is a nice example of a non conventional } \\
& \text { diffeology when we forget where it comes from. }
\end{aligned}
$$

Functional Diffeology on Fourier Coefficients - II

Remark 1. In other words, the parametrization $r \mapsto\left(f_{n}(r)\right)_{n \in Z}$ is a plot of this diffeology if the functions f_{n} are smooth and their derivatives are uniformly rapidly decreasing:

$$
n^{p} \frac{\partial^{k} f_{n}(r)}{\partial r^{k}} \xrightarrow[|n| \rightarrow \infty]{ } 0, \quad \text { for all } p \in \mathbf{N}
$$

REMARK 2. By compactness, it is enough that, for every point $r_{0} \in \operatorname{dom}(P)$, there exists a ball \mathcal{B}^{\prime} centered at r_{0} such that (\diamond) holds to ensure that (\diamond) holds on every closed ball $\overline{\mathcal{B}} \subset \operatorname{dom}(\mathrm{P})$ REMARK 3. This is a nice example of a non conventional diffeology when we forget where it comes from.

Functional Diffeology on Fourier Coefficients - II

REmARK 1. In other words, the parametrization $r \mapsto\left(f_{n}(r)\right)_{n \in Z}$ is a plot of this diffeology if the functions f_{n} are smooth and their derivatives are uniformly rapidly decreasing:

$$
n^{p} \frac{\partial^{k} f_{n}(r)}{\partial r^{k}} \xrightarrow[|n| \rightarrow \infty]{ } 0, \quad \text { for all } p \in \mathbf{N}
$$

REmark 2. By compactness, it is enough that, for every point $r_{0} \in \operatorname{dom}(P)$, there exists a ball \mathcal{B}^{\prime} centered at r_{0} such that (\diamond) holds to ensure that (\diamond) holds on every closed ball $\overline{\mathcal{B}} \subset \operatorname{dom}(\mathrm{P})$.

Remark 3. This is a nice example of a non conventional
diffeology when we forget where it comes from.

Functional Diffeology on Fourier Coefficients - II

Remark 1. In other words, the parametrization $r \mapsto\left(f_{n}(r)\right)_{n \in Z}$ is a plot of this diffeology if the functions f_{n} are smooth and their derivatives are uniformly rapidly decreasing:

$$
n^{p} \frac{\partial^{k} f_{n}(r)}{\partial r^{k}} \xrightarrow[|n| \rightarrow \infty]{ } 0, \quad \text { for all } p \in \mathbf{N}
$$

REmark 2. By compactness, it is enough that, for every point $r_{0} \in \operatorname{dom}(P)$, there exists a ball \mathcal{B}^{\prime} centered at r_{0} such that (\diamond) holds to ensure that (\diamond) holds on every closed ball $\overline{\mathcal{B}} \subset \operatorname{dom}(\mathrm{P})$.

REMARK 3. This is a nice example of a non conventional diffeology when we forget where it comes from.

The Infinite Torus

DEFINITION. Let T^{∞} be the group of infinite sequences of complex unit number:

acting \mathbf{C}-linearly on \mathcal{E} by

$$
\left(z_{n}\right)_{n \in Z} \cdot\left(Z_{n}\right)_{n \in Z}=\left(z_{n} Z_{n}\right)_{n \in Z}
$$

- A rapidly decreasing complex sequence is obviously transformed into another.
- Every element $z=\left(z_{n}\right)_{n \in Z} \in T^{\infty}$ is invertible,

$$
\left(z_{n}\right)_{n \in Z}^{-1}=\left(\bar{z}_{n}\right)_{n \in Z}, \quad \bar{z}=z^{*}
$$

The Infinite Torus

Definition. Let T^{∞} be the group of infinite sequences of complex unit number:

$$
\mathrm{T}^{\infty}=\prod_{n \in Z} \mathrm{U}(1)
$$

acting \mathbf{C}-linearly on \mathcal{E} by

$$
\left(z_{n}\right)_{n \in Z} \cdot\left(Z_{n}\right)_{n \in z}=\left(z_{n} Z_{n}\right)_{n \in Z}
$$

- A rapidly decreasing complex sequence is obviously transformed into another.
- Every element $z=\left(z_{n}\right)_{n \in Z} \in T^{\infty}$ is invertible,

$$
\left(z_{n}\right)_{n \in Z}^{-1}=\left(\bar{z}_{n}\right)_{n \in Z}, \quad \bar{z}=z^{*} .
$$

The Infinite Torus

Definition. Let T^{∞} be the group of infinite sequences of complex unit number:

$$
\mathrm{T}^{\infty}=\prod_{n \in Z} \mathrm{U}(1)
$$

acting C-linearly on \mathcal{E} by

$$
\left(z_{n}\right)_{n \in Z} \cdot\left(Z_{n}\right)_{n \in Z}=\left(z_{n} Z_{n}\right)_{n \in Z} .
$$

- A rapidly decreasing complex sequence is obviously transformed into another.
- Every element $z=\left(z_{n}\right)_{n \in Z} \in T^{\infty}$ is invertible,

$$
\left(z_{n}\right)_{n \in Z}^{-1}=\left(\bar{z}_{n}\right)_{n \in Z}, \quad \bar{z}=z^{*} .
$$

The Infinite Torus

Definition. Let T^{∞} be the group of infinite sequences of complex unit number:

$$
\mathrm{T}^{\infty}=\prod_{n \in Z} \mathrm{U}(1)
$$

acting C-linearly on \mathcal{E} by

$$
\left(z_{n}\right)_{n \in Z} \cdot\left(Z_{n}\right)_{n \in Z}=\left(z_{n} Z_{n}\right)_{n \in Z}
$$

- A rapidly decreasing complex sequence is obviously transformed into another.
- Every element $z=\left(z_{n}\right)_{n \in Z} \in T^{\infty}$ is invertible,

$$
\left(z_{n}\right)_{n \in Z}^{-1}=\left(\bar{z}_{n}\right)_{n \in Z}, \quad \bar{z}=z^{*}
$$

The Infinite Torus

Definition. Let T^{∞} be the group of infinite sequences of complex unit number:

$$
\mathrm{T}^{\infty}=\prod_{n \in Z} \mathrm{U}(1)
$$

acting C-linearly on \mathcal{E} by

$$
\left(z_{n}\right)_{n \in Z} \cdot\left(Z_{n}\right)_{n \in Z}=\left(z_{n} Z_{n}\right)_{n \in Z}
$$

- A rapidly decreasing complex sequence is obviously transformed into another.
- Every element $z=\left(z_{\mathfrak{n}}\right)_{\mathfrak{n} \in \boldsymbol{Z}} \in T^{\infty}$ is invertible,

$$
\left(z_{n}\right)_{n \in Z}^{-1}=\left(\bar{z}_{n}\right)_{n \in Z}, \quad \bar{z}=z^{*}
$$

Action of The Infinite Torus

For every plot $r \mapsto\left(Z_{n}(r)\right)_{n \in Z}$ in \mathcal{E}, for all $p \in \mathbf{N}$,

$$
\left|\frac{\partial^{k} z_{n} Z_{n}\left(r^{r}\right)}{\partial r^{k}}\right|=\left|z_{n} \frac{\partial^{k} Z_{n}\left(r^{r}\right)}{\partial r^{k}}\right|=\left|\frac{\partial^{k} Z_{n}(r)}{\partial r^{k}}\right|
$$

Proposition. The action of $\left(z_{n}\right)_{n \in Z}$ on \mathcal{E} is smooth as well as its inverse. $\left(z_{n}\right)_{n \in 7}$ acts on \mathcal{E} by diffeomorphism. We got a monomorphism

$$
\eta: \mathrm{T}^{\infty} \rightarrow \mathrm{GL}^{\infty}(\mathcal{\varepsilon})=\mathrm{GL}(\mathcal{E}) \cap \operatorname{Diff}(\mathcal{\varepsilon})
$$

Action of The Infinite Torus

For every plot $\mathrm{r} \mapsto\left(\mathrm{Z}_{\mathrm{n}}(\mathrm{r})\right)_{\mathrm{n} \in \mathrm{Z}}$ in \mathcal{E}, for all $\mathrm{p} \in \mathbf{N}$,

$$
\left|\frac{\partial^{k} z_{n} Z_{n}(r)}{\partial r^{k}}\right|=\left|z_{n} \frac{\partial^{k} Z_{n}(r)}{\partial r^{k}}\right|=\left|\frac{\partial^{k} Z_{n}(r)}{\partial r^{k}}\right| .
$$

Proposition. The action of $\left(z_{n}\right)_{n \in Z}$ on \mathcal{E} is smooth as well as its inverse, $\left(z_{n}\right)_{n \in Z}$ acts on \mathcal{E} by diffeomorphism. We got a monomorphism

Action of The Infinite Torus

For every plot $\mathrm{r} \mapsto\left(\mathrm{Z}_{\mathrm{n}}(\mathrm{r})\right)_{\mathrm{n} \in \mathrm{Z}}$ in \mathcal{E}, for all $\mathrm{p} \in \mathbf{N}$,

$$
\left|\frac{\partial^{k} z_{n} Z_{n}(r)}{\partial r^{k}}\right|=\left|z_{n} \frac{\partial^{k} Z_{n}(r)}{\partial r^{k}}\right|=\left|\frac{\partial^{k} Z_{n}(r)}{\partial r^{k}}\right| .
$$

Proposition. The action of $\left(z_{n}\right)_{n \in Z}$ on \mathcal{E} is smooth as well as its inverse, $\left(z_{n}\right)_{n \in \boldsymbol{Z}}$ acts on \mathcal{E} by diffeomorphism. We got a monomorphism

$$
\eta: \mathrm{T}^{\infty} \rightarrow \mathrm{GL}^{\infty}(\mathcal{\varepsilon})=\mathrm{GL}(\mathcal{\varepsilon}) \cap \operatorname{Diff}(\mathcal{\varepsilon})
$$

Diffeology of The Infinite Torus

Definition. A tempered parametrization in T^{∞} is a
parametrization

$$
\zeta: r \mapsto\left(z_{n}(r)\right)_{n \in Z}
$$

that satisfies:

- The z_{n} are smooth and if for every $k \in \mathbf{N}$.
- For every r_{0} in $\operatorname{dom}(\zeta)$, there exist a closed ball $\overline{\mathcal{B}} \subset \operatorname{dom}(\zeta)$ centered at r_{0}, a polynomial P_{k} and an integer N such that:

PROPOSITION. The tempered parametrizations form a group diffenloger on T^{∞}.

Diffeology of The Infinite Torus

Definition. A tempered parametrization in T^{∞} is a parametrization

$$
\zeta: r \mapsto\left(z_{n}(r)\right)_{n \in Z}
$$

that satisfies:

- The z_{n} are smooth and if for every $k \in N$.
- For every r_{0} in dom (ζ), there exist a closed ball
$\overline{\mathcal{B}} \subset \operatorname{dom}(\zeta)$ centered at r_{0}, a polynomial P_{k} and a integer
N such that:

Proposition. The tempered parametrizations form a group
diffeology on T^{∞}.

Diffeology of The Infinite Torus

Definition. A tempered parametrization in T^{∞} is a parametrization

$$
\zeta: r \mapsto\left(z_{n}(r)\right)_{n \in Z}
$$

that satisfies:

- The z_{n} are smooth and if for every $k \in \mathbf{N}$.
- For every r_{0} in dom(ζ), there exist a closed ball
$\overline{\mathcal{B}} \subset \operatorname{dom}(\zeta)$ centered at r_{0}, a polynomial P_{k} and an integer
N such that:

Proposition. The tempered parametrizations form a group
diffeology on T^{∞}

Diffeology of The Infinite Torus

Definition. A tempered parametrization in T^{∞} is a parametrization

$$
\zeta: r \mapsto\left(z_{n}(r)\right)_{n \in Z}
$$

that satisfies:

- The z_{n} are smooth and if for every $k \in \mathbf{N}$.
- For every r_{0} in $\operatorname{dom}(\zeta)$, there exist a closed ball $\overline{\mathcal{B}} \subset \operatorname{dom}(\zeta)$ centered at r_{0}, a polynomial P_{k} and an integer N such that:

$$
\forall \mathrm{r} \in \mathcal{B}, \forall \mathrm{n}>\mathrm{N}, \quad\left|\frac{\partial^{k} z_{\mathrm{n}}(\mathrm{r})}{\partial r^{k}}\right| \leq \mathrm{P}_{\mathrm{k}}(\mathrm{n})
$$

Proposition. The tempered parametrizations form a group
diffeology on T^{∞}

Diffeology of The Infinite Torus

Definition. A tempered parametrization in T^{∞} is a parametrization

$$
\zeta: r \mapsto\left(z_{n}(r)\right)_{n \in Z}
$$

that satisfies:

- The z_{n} are smooth and if for every $k \in \mathbf{N}$.
- For every r_{0} in $\operatorname{dom}(\zeta)$, there exist a closed ball $\overline{\mathcal{B}} \subset \operatorname{dom}(\zeta)$ centered at r_{0}, a polynomial P_{k} and an integer N such that:

$$
\forall \mathrm{r} \in \mathcal{B}, \forall \mathrm{n}>\mathrm{N}, \quad\left|\frac{\partial^{\mathrm{k}} z_{\mathrm{n}}(\mathrm{r})}{\partial \mathrm{r}^{\mathrm{k}}}\right| \leq \mathrm{P}_{\mathrm{k}}(\mathrm{n})
$$

Proposition. The tempered parametrizations form a group diffeology on T^{∞}.

Smooth Action of The Infinite Torus

Proposition. Equipped with the tempered diffeology, the action of the groum T^{∞} on \mathcal{E} is smooth. That is the monomorphism $\eta: T^{\infty} \rightarrow G L^{\infty}(\mathcal{E})$ is smooth.

Next, for all $N \in N$, let $\iota_{N}: T^{N} \rightarrow T^{\infty}$ be defined as follows:

$$
u_{N}\left(z_{n}\right)_{n=1}^{N}=Z \text { with } \begin{cases}Z_{n}=z_{n} & \text { if } n \in\{1, \ldots, N\}, \\ Z_{n}=1 & \text { otherwise. }\end{cases}
$$

Proposition. The smooth injection l_{N} is a diffeomorphism from T^{N} onto its image equinned with the subset diffeologv. That is, an induction.

Smooth Action of The Infinite Torus

Proposition. Equipped with the tempered diffeology, the action of the group T^{∞} on \mathcal{E} is smooth. That is, the monomorphism η : $\mathrm{T}^{\infty} \rightarrow \mathrm{GL}^{\infty}(\mathcal{E})$ is smooth.

Next, for all $N \in N$, let $\iota_{N}: T^{N} \rightarrow T^{\infty}$ be defined as follows:

Proposition. The smooth injection l_{N} is a diffeomorphism from TN onto ita image aquinnad writh the arubant diffenlogr. That is, an induction.

Smooth Action of The Infinite Torus

Proposition. Equipped with the tempered diffeology, the action of the group T^{∞} on \mathcal{E} is smooth. That is, the monomorphism $\eta: \mathrm{T}^{\infty} \rightarrow \mathrm{GL}^{\infty}(\mathcal{E})$ is smooth.

Next, for all $N \in N$, let $\mathfrak{l}_{\mathrm{N}}: \mathrm{T}^{\mathrm{N}} \rightarrow \mathrm{T}^{\infty}$ be defined as follows:

$$
\iota_{N}\left(z_{n}\right)_{n=1}^{N}=Z \quad \text { with } \quad \begin{cases}Z_{n}=z_{n} & \text { if } n \in\{1, \ldots, N\} \\ Z_{n}=1 & \text { otherwise. }\end{cases}
$$

Proposition. The smooth injection l_{N} is a diffeomorphism from T^{N} onto its image equipped with the subset diffeology. That is, an induction.

Smooth Action of The Infinite Torus

Proposition. Equipped with the tempered diffeology, the action of the group T^{∞} on \mathcal{E} is smooth. That is, the monomorphism η : $\mathrm{T}^{\infty} \rightarrow \mathrm{GL}^{\infty}(\mathcal{E})$ is smooth.

Next, for all $\mathrm{N} \in \mathbf{N}$, let $\mathfrak{l}_{\mathrm{N}}: \mathrm{T}^{\mathrm{N}} \rightarrow \mathrm{T}^{\infty}$ be defined as follows:

$$
\iota_{N}\left(z_{n}\right)_{n=1}^{N}=Z \quad \text { with } \quad \begin{cases}Z_{n}=z_{n} & \text { if } n \in\{1, \ldots, N\} \\ Z_{n}=1 & \text { otherwise. }\end{cases}
$$

Proposition. The smooth injection $\mathfrak{l}_{\mathrm{N}}$ is a diffeomorphism from T^{N} onto its image equipped with the subset diffeology. That is, an induction.

Induced Solenoids

Consider a sequence $\alpha=\left(\alpha_{n}\right)_{n \in Z}$ of positive numbers,
independent over \mathbf{Q}. That is,

$$
\sum_{n \in z} q_{n} \alpha_{n}=0 \Rightarrow q_{n}=0
$$

for all finitely supported sequence of rational numbers $q_{n} \in \mathbf{Q}$.
In the following we wrill eoncider ouch secmences mith $|\sim|<1$
Then, the map

$$
\iota: \mathbf{R} \mapsto \mathrm{T}^{\infty}, \quad \text { defined by } \quad \iota(\mathrm{t})=\left(\mathrm{e}^{2 \mathrm{i} \pi \alpha_{n} \mathrm{t}}\right)
$$

which is obviously injective, is an induction, that is, a
diffeomorphism onto its image equipped with the subset
diffeology. We call the image $t(R) \subset T^{\infty}$, an irrational solenoid.

Induced Solenoids

Consider a sequence $\alpha=\left(\alpha_{n}\right)_{n \in Z}$ of positive numbers, independent over \mathbf{Q}. That is,

$$
\sum_{n \in Z} q_{n} \alpha_{n}=0 \quad \Rightarrow \quad q_{n}=0
$$

for all finitely supported sequence of rational numbers $q_{n} \in \mathbf{Q}$.
In the following we will consider such sequences with $\left|\alpha_{n}\right| \leq 1$ Then, the map

which is obviously injective, is an induction, that is, a diffeomomphiam onto its image acminned mith the anhant diffeology. We call the image $t(R)$

Induced Solenoids

Consider a sequence $\alpha=\left(\alpha_{n}\right)_{n \in Z}$ of positive numbers, independent over \mathbf{Q}. That is,

$$
\sum_{n \in Z} q_{n} \alpha_{n}=0 \quad \Rightarrow \quad q_{n}=0
$$

for all finitely supported sequence of rational numbers $q_{n} \in \mathbf{Q}$.
In the following we will consider such sequences with $\left|\alpha_{n}\right| \leq 1$. Then, the map

$$
\imath: \mathbf{R} \mapsto T^{\infty}, \quad \text { defined by } \quad \iota(t)=\left(e^{2 i \pi \alpha_{n} t}\right)_{n \in Z}
$$

which is obviously injective, is an induction, that is, a diffeomorphism onto its image equipped with the subset diffeology. We call the image $\boldsymbol{\imath}(\mathbf{R}) \subset \mathrm{T}^{\infty}$, an irrational solenoid.

Symplectic Structure on $C_{\text {per }}^{\infty}(R, C)$

Let Surf be the standard symplectic form on C:

$$
\operatorname{Surf}_{z}\left(\delta z, \delta^{\prime} z\right)=\frac{1}{2 i}\left[\delta \bar{z} \delta^{\prime} z-\delta^{\prime} \bar{z} \delta z\right] \quad \forall z, \delta z, \delta^{\prime} z \in \mathbf{C} .
$$

The evaluation map: for all $x \in \mathbf{R}$, let

Because \hat{x} is smooth, the mean value of the pullback $\hat{\chi}^{*}$ (Surf) is a 2 -form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$, and closed.

$$
\omega=\frac{1}{\pi} \int_{0}^{1} \hat{x}^{*}(\text { Surf }) d x \quad \text { with } \quad\left\{\begin{array}{l}
\omega \in \Omega^{2}\left(C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})\right) \\
d \omega=0 .
\end{array}\right.
$$

Symplectic Structure on $C_{\text {per }}^{\infty}(\mathrm{R}, \mathrm{C})$

Let Surf be the standard symplectic form on \mathbf{C} :

$$
\operatorname{Surf}_{z}\left(\delta z, \delta^{\prime} z\right)=\frac{1}{2 i}\left[\delta \bar{z} \delta^{\prime} z-\delta^{\prime} \bar{z} \delta z\right] \quad \forall z, \delta z, \delta^{\prime} z \in \mathbf{C}
$$

Because \hat{x} is smooth, the mean value of the pullback \hat{x}^{*} (Surf) is a 2 -form on $C_{\text {ner }}^{\infty}(\mathbf{R}, \mathbf{C})$, and closed.

Symplectic Structure on $C_{\text {per }}^{\infty}(\mathrm{R}, \mathrm{C})$

Let Surf be the standard symplectic form on \mathbf{C} :

$$
\operatorname{Surf}_{z}\left(\delta z, \delta^{\prime} z\right)=\frac{1}{2 i}\left[\delta \bar{z} \delta^{\prime} z-\delta^{\prime} \bar{z} \delta z\right] \quad \forall z, \delta z, \delta^{\prime} z \in \mathbf{C}
$$

The evaluation map: for all $x \in \mathbf{R}$, let

$$
\hat{x}: C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C}) \rightarrow \mathbf{C} \quad \text { with } \quad \hat{x}(f)=f(x), \quad \forall x \in \mathbf{R}
$$

Because \hat{x} is smooth, the mean value of the pullback $\hat{\chi}^{*}$ (Surf) is a 2 -form on $\mathrm{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$, and closed.

$d \omega=0$.

Symplectic Structure on $C_{\text {per }}^{\infty}(R, C)$

Let Surf be the standard symplectic form on \mathbf{C} :

$$
\operatorname{Surf}_{z}\left(\delta z, \delta^{\prime} z\right)=\frac{1}{2 i}\left[\delta \bar{z} \delta^{\prime} z-\delta^{\prime} \bar{z} \delta z\right] \quad \forall z, \delta z, \delta^{\prime} z \in \mathbf{C}
$$

The evaluation map: for all $x \in \mathbf{R}$, let

$$
\hat{x}: C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C}) \rightarrow \mathbf{C} \quad \text { with } \quad \hat{x}(f)=f(x), \quad \forall x \in R
$$

Because \hat{x} is smooth, the mean value of the pullback $\hat{x}^{*}(\operatorname{Surf})$ is a 2 -form on $C_{p e r}^{\infty}(\mathbf{R}, \mathbf{C})$, and closed.

$$
\omega=\frac{1}{\pi} \int_{0}^{1} \hat{x}^{*}(\text { Surf }) d x \quad \text { with } \quad\left\{\begin{array}{l}
\omega \in \Omega^{2}\left(\mathrm{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})\right) \\
d \omega=0
\end{array}\right.
$$

The Form ω by Plots

Explicit value of ω : Let $P: r \mapsto f_{r}$ be a plot in $C_{p e r}^{\infty}(\mathbf{R}, \mathbf{C})$,

$$
\begin{aligned}
\omega(P)_{r}\left(\delta r, \delta^{\prime} r\right) & =\frac{1}{2 i \pi} \int_{0}^{1}\left\{\frac{\partial \overline{f_{r}(x)}}{\partial r}(\delta r) \frac{\partial f_{r}(x)}{\partial r}\left(\delta^{\prime} r\right)\right. \\
& \left.-\frac{\partial \overline{f_{r}(x)}}{\partial r}\left(\delta^{\prime} r\right) \frac{\partial f_{r}(x)}{\partial r}(\delta r)\right\} d x
\end{aligned}
$$

The Form ω is Indeed Symplectic

The closed 2 -form ω is invariant by translation $\operatorname{Tr}_{g}: f \mapsto f+g$, and $C_{p e r}^{\infty}(\mathbf{R}, \mathbf{C})$ is an homogeneous space of itself. The moment map of this action is given, up to a constant, bv:

$$
\mu(f)=\frac{1}{2 i \pi} d\left[g \mapsto \int_{0}^{1} \bar{f} g-\bar{g} f\right]
$$

Proposition. The space $C_{p e r}^{\infty}(\mathbf{R}, \mathbf{C})$ as additive group acts transitivelv on itself bv translation, preserving ω, and the moment map μ is injective. Thus $\left(C_{\text {per }}^{\infty}(R, C), \omega\right)$ is a diffeological symplectic space.

Nope This is the defnition given in the Introduction of
"Example of singular reduction in symplectic diffeology" (P.I-Z)
Proc Amer Math Soc 144(2)•1309-1324 (2016)

The Form ω is Indeed Symplectic

The closed 2-form ω is invariant by translation $\operatorname{Tr}_{g}: f \mapsto f+g$, and $\mathbf{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$ is an homogeneous space of itself. The moment map of this action is given, up to a constant, by:

$$
\mu(f)=\frac{1}{2 i \pi} d\left[g \mapsto \int_{0}^{1} \bar{f} g-\bar{g} f\right] .
$$

Proposition. The space $\mathrm{C}_{\text {per }}^{\infty}(\mathrm{R}, \mathrm{C})$ as additive group actstransitively on itself by translation, preserving ω, and the moment map μ is injective. Thus $\left(C_{\text {per }}^{\infty}(R, C), \omega\right)$ is a diffeological symplectic space.
Note This is the definition given in the Introduction of "Example of singular reduction in symplectic diffeology" (P.I-Z) Proc. Amer. Math. Soc., 144(2):1309-1324 (2016).

The Form ω is Indeed Symplectic

The closed 2-form ω is invariant by translation $\operatorname{Tr}_{g}: f \mapsto f+g$, and $\mathbf{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$ is an homogeneous space of itself. The moment map of this action is given, up to a constant, by:

$$
\mu(f)=\frac{1}{2 i \pi} d\left[g \mapsto \int_{0}^{1} \bar{f} g-\bar{g} f\right] .
$$

Proposition. The space $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$ as additive group acts transitively on itself by translation, preserving ω, and the moment map μ is injective. Thus $\left(C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C}), \omega\right)$ is a diffeological symplectic space.

Note This is the definition given in the Introduction of
"Example of singular reduction in symplectic diffeology" (P.I-Z)
Proc. Amer. Math. Soc., 144(2):1309-1324 (2016).

The Form ω is Indeed Symplectic

The closed 2-form ω is invariant by translation $\operatorname{Tr}_{g}: f \mapsto f+g$, and $\mathbf{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$ is an homogeneous space of itself. The moment map of this action is given, up to a constant, by:

$$
\mu(f)=\frac{1}{2 i \pi} d\left[g \mapsto \int_{0}^{1} \bar{f} g-\bar{g} f\right] .
$$

Proposition. The space $\mathbf{C}_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$ as additive group acts transitively on itself by translation, preserving ω, and the moment map μ is injective. Thus $\left(C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C}), \omega\right)$ is a diffeological symplectic space.

Note This is the definition given in the Introduction of "Example of singular reduction in symplectic diffeology" (P.I-Z). Proc. Amer. Math. Soc., 144(2):1309-1324 (2016).

A Word on Moment Map

When we have a closed 2-form ω on a diffeological space X, invariant by a group G, there is a moment map

$$
\mu \mathrm{V} \cdot \rho^{*} / \Gamma
$$

where \mathcal{G}^{*} is the space of momenta, that is, the spaces of
left-invariant 1 -forms on G, and Γ some representation of π (X).
In the simplest case where $\omega=\mathrm{d} \alpha$ and α is itself invariant:

$$
\mu(x)=\hat{x}^{*}(\alpha) \in \mathcal{G}^{*} .
$$

The case non invariant-exact is treated involving some
diffeological constructions on the space Paths(X).

- "The Moment Map in Diffeology", P.I-Z. Memoir of the American Mathematical Society (2010) no.970, USA.

A Word on Moment Map

When we have a closed 2-form ω on a diffeological space X , invariant by a group G, there is a moment map

$$
\mu: X \rightarrow \mathcal{G}^{*} / \Gamma
$$

where \mathcal{G}^{*} is the space of momenta, that is, the spaces of left-invariant 1 -forms on G, and Γ some representation of $\pi_{1}(X)$. In the simplest case where $\omega=\mathrm{d} \alpha$ and α is itself invariant

The case non invariant-exact is treated involving some diffeological constructions on the space Paths(X)

- "The Moment Map in Diffeology", P.I-Z. Memoir of the American Mathematical Society (2010) no.970, USA.

A Word on Moment Map

When we have a closed 2-form ω on a diffeological space X, invariant by a group G, there is a moment map

$$
\mu: X \rightarrow \mathcal{G}^{*} / \Gamma
$$

where \mathcal{G}^{*} is the space of momenta, that is, the spaces of left-invariant 1 -forms on G, and Γ some representation of $\pi_{1}(X)$. In the simplest case where $\omega=\mathrm{d} \alpha$ and α is itself invariant:

$$
\mu(x)=\hat{x}^{*}(\alpha) \in \mathcal{G}^{*}
$$

The case non invariant-exact is treated involving some
diffeological constructions on the space Paths(X)

- "mhe Moment Mrap in Diffeology", nTZ. Membir of the American Mathematical Society (2010) no.970, USA.

A Word on Moment Map

When we have a closed 2-form ω on a diffeological space X , invariant by a group G, there is a moment map

$$
\mu: \mathrm{X} \rightarrow \mathcal{G}^{*} / \Gamma
$$

where \mathcal{G}^{*} is the space of momenta, that is, the spaces of left-invariant 1 -forms on G, and Γ some representation of $\pi_{1}(X)$.

In the simplest case where $\omega=\mathrm{d} \alpha$ and α is itself invariant:

$$
\mu(x)=\hat{x}^{*}(\alpha) \in \mathcal{G}^{*}
$$

The case non invariant-exact is treated involving some diffeological constructions on the space Paths(X).

- "The Moment Map in Diffeology", P.I-Z. Memoir of the American Mathematical Society (2010) no.970, USA.

The Moment Map μ of the (Hamiltonian and exact) action of T^{∞} on ε :

- $\pi_{n}: \mathrm{T}^{\infty} \rightarrow \mathrm{U}(1)$ is the n-th projection $\pi_{n}(\mathrm{Z})=\mathrm{Z}_{\mathrm{n}}$,
- θ is the canonical invariant 1 -form on U(1).
- σ is some constant momentum of T^{∞} (an invariant 1-form).

Note. For all plot $\zeta: r \mapsto\left(z_{n}(r)\right)_{n \in Z}$ in T^{∞}, the value of the moment map $\mu(\mathrm{Z})(\zeta)_{\mathrm{r}}(\delta \mathrm{r})$, which is defined as an infinite series converges thanks to the definition of the tempered diffeology.

The Moment Map of T^{∞} on \mathcal{E}

The Moment Map μ of the (Hamiltonian and exact) action of T^{∞} on \mathcal{E} :

$$
\mu(Z)=\frac{1}{2 i \pi} \sum_{n \in Z}\left|Z_{n}\right|^{2} \pi_{n}^{*}(\theta)+\sigma
$$

- $\pi_{n}: T^{\infty} \rightarrow \mathrm{U}(1)$ is the n-th projection $\pi_{n}(Z)=Z_{n}$,
- θ is the canonical invariant 1 -form on $\mathrm{U}(1)$,
- σ is some constant momentrm of T${ }^{\infty}$ (an invariant 1-form)

Note. For all plot $\zeta: r \mapsto\left(z_{n}(r)\right)_{n \in Z}$ in T^{∞}, the value of the moment map $\mu(\mathrm{Z})(\zeta)_{\mathrm{r}}(\delta \mathrm{r})$, which is defined as an infinite series converges thanks to the definition of the tempered diffeology.

The Moment Map of T^{∞} on \mathcal{E}

The Moment Map μ of the (Hamiltonian and exact) action of T^{∞} on \mathcal{E} :

$$
\mu(Z)=\frac{1}{2 i \pi} \sum_{n \in Z}\left|Z_{n}\right|^{2} \pi_{n}^{*}(\theta)+\sigma
$$

- $\pi_{n}: \mathrm{T}^{\infty} \rightarrow \mathrm{U}(1)$ is the n-th projection $\pi_{\mathrm{n}}(\mathrm{Z})=\mathrm{Z}_{\mathrm{n}}$,
- θ is the canonical invariant 1 -form on $\mathrm{U}(1)$,
- σ is some constant momentum of T^{∞} (an invariant 1 -form) Note. For all plot $\zeta: r \mapsto\left(z_{n}(r)\right)_{n \in Z}$ in T^{∞}, the value of the moment map $\mu(\mathrm{Z})(\zeta)_{\mathrm{r}}(\delta \mathrm{r})$, which is defined as an infinite series, converges thanks to the definition of the tempered diffeology.

The Moment Map of T^{∞} on \mathcal{E}

The Moment Map μ of the (Hamiltonian and exact) action of T^{∞} on \mathcal{E} :

$$
\mu(Z)=\frac{1}{2 i \pi} \sum_{n \in Z}\left|Z_{n}\right|^{2} \pi_{n}^{*}(\theta)+\sigma
$$

- $\pi_{n}: T^{\infty} \rightarrow \mathrm{U}(1)$ is the n-th projection $\pi_{n}(Z)=Z_{n}$,
- θ is the canonical invariant 1 -form on $\mathrm{U}(1)$,
- σ is some constant momentum of T^{∞} (an invariant 1 -form) moment map $\mu(\mathrm{Z})(\zeta)_{\mathrm{r}}(\delta \mathrm{r})$, which is defined as an infinite series, converges thanks to the definition of the tempered diffeology.

The Moment Map of T^{∞} on \mathcal{E}

The Moment Map μ of the (Hamiltonian and exact) action of T^{∞} on \mathcal{E} :

$$
\mu(Z)=\frac{1}{2 i \pi} \sum_{n \in Z}\left|Z_{n}\right|^{2} \pi_{n}^{*}(\theta)+\sigma
$$

- $\pi_{n}: \mathrm{T}^{\infty} \rightarrow \mathrm{U}(1)$ is the n-th projection $\pi_{n}(\mathrm{Z})=\mathrm{Z}_{\mathrm{n}}$,
- θ is the canonical invariant 1 -form on $\mathrm{U}(1)$,
- σ is some constant momentum of T^{∞} (an invariant 1-form). moment map $\mu(Z)(\zeta)_{r}(\delta r)$, which is defined as an infinite series, thanks to the definition of the tempered diffeology.

The Moment Map of T^{∞} on \mathcal{E}

The Moment Map μ of the (Hamiltonian and exact) action of T^{∞} on \mathcal{E} :

$$
\mu(Z)=\frac{1}{2 i \pi} \sum_{n \in Z}\left|Z_{n}\right|^{2} \pi_{n}^{*}(\theta)+\sigma
$$

- $\pi_{n}: \mathrm{T}^{\infty} \rightarrow \mathrm{U}(1)$ is the n-th projection $\pi_{n}(\mathrm{Z})=\mathrm{Z}_{\mathrm{n}}$,
- θ is the canonical invariant 1 -form on $\mathrm{U}(1)$,
- σ is some constant momentum of T^{∞} (an invariant 1-form).

Note. For all plot $\zeta: r \mapsto\left(z_{n}(r)\right)_{n \in Z}$ in T^{∞}, the value of the moment map $\mu(Z)(\zeta)_{r}(\delta r)$, which is defined as an infinite series, converges thanks to the definition of the tempered diffeology.

The Moment Map of the Solenoid

Let $\left(\alpha_{n}\right)_{n \in Z}$ be a sequence of positive numbers, independent over \mathbf{Q} and let

$$
\underline{t}\left(Z_{n}\right)_{n \in Z}=\left(e^{2 i \pi \alpha_{n} t} Z_{n}\right)_{n \in Z}
$$

be the induced action of \mathbf{R} on \mathcal{E}.
We call α-solenoid the subgroup

$$
\mathcal{S}_{\alpha}=\left\{\left(e^{2 i \pi \alpha_{n} t}\right)_{n \in Z}\right\}_{t \in R} \subset T^{\infty}
$$

Its moment map is given by reduction of μ :

$$
v(Z)=h(Z) d t \quad \text { with }
$$

The Moment Map of the Solenoid

Let $\left(\alpha_{n}\right)_{n \in Z}$ be a sequence of positive numbers, independent over \mathbf{Q} and let

$$
\underline{\mathrm{t}}\left(\mathrm{Z}_{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbf{Z}}=\left(\mathrm{e}^{2 i \pi \alpha_{n} \mathrm{t}} \mathrm{Z}_{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbf{Z}}
$$

be the induced action of \mathbf{R} on \mathcal{E}.
We call α-solenoid the subgroup

$$
S_{\alpha}=\left\{\left(e^{2 i \pi \alpha_{n} t}\right)_{n \in Z}\right\}_{t \in R} \subset T^{\infty} .
$$

Its moment map is given by reduction of μ :

$$
v(Z)=h(Z) d t
$$

where c is some constant. The function h is called Hamiltonian.

The Moment Map of the Solenoid

Let $\left(\alpha_{n}\right)_{n \in Z}$ be a sequence of positive numbers, independent over \mathbf{Q} and let

$$
\underline{\mathrm{t}}\left(\mathrm{Z}_{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbf{Z}}=\left(\mathrm{e}^{2 i \pi \alpha_{n} \mathrm{t}} \mathrm{Z}_{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbf{Z}}
$$

be the induced action of \mathbf{R} on \mathcal{E}.
We call α-solenoid the subgroup

$$
\mathcal{S}_{\alpha}=\left\{\left(e^{2 i \pi \alpha_{\mathfrak{n}} t}\right)_{\mathfrak{n} \in \mathrm{Z}}\right\}_{\mathrm{t} \in \mathbf{R}} \subset \mathrm{~T}^{\infty} .
$$

Its moment map is given by reduction of μ :

$$
v(Z)=h(Z) d t
$$

where c is some constant. The function h is called Hamiltonian.

The Moment Map of the Solenoid

Let $\left(\alpha_{n}\right)_{n \in Z}$ be a sequence of positive numbers, independent over \mathbf{Q} and let

$$
\underline{\mathrm{t}}\left(\mathrm{Z}_{\mathrm{n}}\right)_{\mathfrak{n} \in \mathrm{Z}}=\left(\mathrm{e}^{2 i \pi \alpha_{n} t} Z_{n}\right)_{n \in Z}
$$

be the induced action of \mathbf{R} on \mathcal{E}.
We call α-solenoid the subgroup

$$
\mathcal{S}_{\alpha}=\left\{\left(e^{2 i \pi \alpha_{n} t}\right)_{\mathfrak{n} \in \mathrm{Z}}\right\}_{\mathrm{t} \in \mathrm{R}} \subset \mathrm{~T}^{\infty} .
$$

Its moment map is given by reduction of μ :

$$
v(Z)=h(Z) d t \quad \text { with } \quad h(Z)=\sum_{n \in Z} \alpha_{n}\left|Z_{n}\right|^{2}+c
$$

where c is some constant. The function h is called Hamiltonian.

The Infinite Sphere and the Solenoid

Let S_{α}^{∞} be the unit level of the Hamiltonian h, for $c=0$.

$$
S_{\infty}^{\infty}=\left\{Z=\left(Z_{n}\right)_{n \in z} \in \varepsilon^{1} \sum_{n \in z} \alpha_{n} \mid Z_{n}{ }^{2}=1\right\}
$$

Let $\mathrm{QP}_{\alpha}^{\infty}$ be the quotient of the inifinite ellipsoid $\mathrm{S}_{\alpha}^{\infty}$ by the action of the solenoid, equipped with the quotient diffeology, and pr be the projection,

$$
\mathrm{pr}: \mathrm{S}_{\alpha}^{\infty} \rightarrow \mathrm{QP}_{\alpha}^{\infty} \quad \text { and } \quad \mathrm{QP}_{\alpha}^{\infty}=\mathrm{S}_{\alpha}^{\infty} / \underline{\mathrm{R}} .
$$

We call the quotient space an: Infinite Quasiprojective Space since it is a generalization of Prato's quasisphere [EP01].

The Infinite Sphere and the Solenoid

Let S_{α}^{∞} be the unit level of the Hamiltonian h, for $c=0$.

$$
S_{\alpha}^{\infty}=\left\{Z=\left.\left(Z_{n}\right)_{n \in Z} \in \mathcal{E}\left|\sum_{n \in Z} \alpha_{n}\right| Z_{n}\right|^{2}=1\right\}
$$

Let $\mathrm{QP}_{\alpha}^{\infty}$ be the quotient of the inifinite ellipsoid $\mathrm{S}_{\alpha}^{\infty}$ by the action of the solenoid, equipped with the quotient diffeology, and pr be the projection,

We call the quotient space an: Infinite Quasiprojective Space since it is a generalization of Prato's quasisphere [EP01]

The Infinite Sphere and the Solenoid

Let S_{α}^{∞} be the unit level of the Hamiltonian h, for $c=0$.

$$
S_{\alpha}^{\infty}=\left\{Z=\left.\left(Z_{n}\right)_{n \in Z} \in \mathcal{E}\left|\sum_{n \in Z} \alpha_{n}\right| Z_{n}\right|^{2}=1\right\}
$$

Let $\mathrm{QP}_{\alpha}^{\infty}$ be the quotient of the inifinite ellipsoid $\mathrm{S}_{\alpha}^{\infty}$ by the action of the solenoid, equipped with the quotient diffeology, and pr be the projection,

$$
\mathrm{pr}: \mathrm{S}_{\alpha}^{\infty} \rightarrow \mathrm{QP}_{\alpha}^{\infty} \quad \text { and } \quad \mathrm{QP}_{\alpha}^{\infty}=\mathrm{S}_{\alpha}^{\infty} / \underline{\mathbf{R}} .
$$

We call the quotient space an:
since it is a generalization of Prato's quasisphere [EP01]

The Infinite Sphere and the Solenoid

Let $\mathrm{S}_{\alpha}^{\infty}$ be the unit level of the Hamiltonian h , for $\mathrm{c}=0$.

$$
S_{\alpha}^{\infty}=\left\{Z=\left.\left(Z_{n}\right)_{n \in Z} \in \mathcal{E}\left|\sum_{n \in Z} \alpha_{n}\right| Z_{n}\right|^{2}=1\right\}
$$

Let $\mathrm{QP}_{\alpha}^{\infty}$ be the quotient of the inifinite ellipsoid $\mathrm{S}_{\alpha}^{\infty}$ by the action of the solenoid, equipped with the quotient diffeology, and pr be the projection,

$$
\mathrm{pr}: \mathrm{S}_{\alpha}^{\infty} \rightarrow \mathrm{QP}_{\alpha}^{\infty} \quad \text { and } \quad \mathrm{QP}_{\alpha}^{\infty}=\mathrm{S}_{\alpha}^{\infty} / \underline{\mathbf{R}} .
$$

We call the quotient space an: Infinite Quasiprojective Space, since it is a generalization of Prato's quasisphere [EP01].

The Orbits of the Solenoid

The orbit of $Z=\left(Z_{n}\right)_{n \in N} \in S_{\alpha}^{\infty}$ by the solenoid S_{α} :

1. If there exist $Z_{n} \neq 0$ and $Z_{m} \neq 0$, then the stabitizer of Z is $\{0\}$ and the orbit is equivalent to the line \mathbf{R}. These are the principal orbits.
2. The sinoular arhits i.e. the non principal orbits, are the subspaces

$$
S_{n}^{1}=\left\{Z \in S_{\alpha}^{\infty} \mid Z_{m}=0 \text { if } m \neq n\right\} \text {, with } \quad n \in Z .
$$

Each singular orbit, equipped with the subset diffeology, is equivalent to the circle S^{1}. They are pure sounds made of only one harmonic.

The Orbits of the Solenoid

The orbit of $Z=\left(Z_{n}\right)_{n \in N} \in S_{\alpha}^{\infty}$ by the solenoid \mathcal{S}_{α} :

$$
\begin{aligned}
& \text { 1. If there exist } Z_{n} \neq 0 \text { and } Z_{m} \neq 0 \text {, then the stabilizer of } Z \text { is } \\
& \{0\} \text { and the orbit is equivalent to the line } R \text {. These are the } \\
& \text { principal orbits. } \\
& \text { 2. The singular orbits, i.e. the non principal orbits, are the } \\
& \text { subspaces } \\
& \qquad S_{n}^{1}=\left\{Z \in S_{\alpha}^{\infty} \mid Z_{m}=0 \text { if } m \neq n\right\} \text {, with } n \in Z \text {. } \\
& \text { Each singular orbit, equipped with the subset diffeology, is } \\
& \text { equivalent to the circle } S^{1} \text {. They are pure sounds made of } \\
& \text { only one harmonic. }
\end{aligned}
$$

The Orbits of the Solenoid

The orbit of $Z=\left(Z_{n}\right)_{n \in N} \in S_{\alpha}^{\infty}$ by the solenoid \mathcal{S}_{α} :

1. If there exist $Z_{n} \neq 0$ and $Z_{m} \neq 0$, then the stabilizer of Z is $\{0\}$ and the orbit is equivalent to the line \mathbf{R}. These are the principal orbits.
2. The singular orbits, i.e. the non principal orbits, are the subspaces

$$
S_{n}^{1}=\left\{Z \in S_{\infty}^{\infty} \mid Z_{m}=0 \text { if } m \neq n\right\} \text {, with } \quad n \in \mathbb{Z} \text {. }
$$

Each singular orbit, equipped with the subset diffeology, is They are pure sounds made of only one harmonic

The Orbits of the Solenoid

The orbit of $Z=\left(Z_{n}\right)_{n \in N} \in S_{\alpha}^{\infty}$ by the solenoid \mathcal{S}_{α} :

1. If there exist $Z_{n} \neq 0$ and $Z_{m} \neq 0$, then the stabilizer of Z is $\{0\}$ and the orbit is equivalent to the line \mathbf{R}. These are the principal orbits.
2. The singular orbits, i.e. the non principal orbits, are the subspaces

$$
S_{n}^{1}=\left\{Z \in S_{\alpha}^{\infty} \mid Z_{m}=0 \text { if } m \neq n\right\}, \quad \text { with } \quad n \in Z .
$$

Each singular orbit, equipped with the subset diffeology, is equivalent to the circle S^{1}. They are pure sounds made of only one harmonic.

The Principal and Singular Loci

The singular locus of the action of the solenoid is

Equipped with the subset diffeology, it is the diffeological sum

$$
\operatorname{sing}=\prod_{n \in Z}^{\mathbf{T}} S_{n}^{1} \text { and } \operatorname{dim}(\operatorname{sing})=1 \text {. }
$$

It is a closed subset for the D-topolgy.
The wanulan or nuinsinal ewhamacn, that is

is an open dense subset for the D-topology.

The Principal and Singular Loci

The singular locus of the action of the solenoid is

$$
\operatorname{Sing}=\bigcup_{n \in Z} S_{n}^{1} \subset S_{\alpha}^{\infty}
$$

Equipped with the subset diffeology, it is the diffeological sum

$$
\operatorname{sing}=\coprod_{n \in Z} S_{n}^{1}, \quad \text { and } \quad \operatorname{dim}(\operatorname{Sing})=1
$$

It is a closed subset for the D-topolgy.
The namulaw on nuimainal anhamace, that is,

is an open dense subset for the D-topology.

The Principal and Singular Loci

The singular locus of the action of the solenoid is

$$
\operatorname{Sing}=\bigcup_{n \in Z} S_{n}^{1} \subset S_{\alpha}^{\infty}
$$

Equipped with the subset diffeology, it is the diffeological sum

$$
\operatorname{Sing}=\coprod_{n \in Z} S_{n}^{1}, \quad \text { and } \quad \operatorname{dim}(\operatorname{Sing})=1
$$

It is a closed subset for the D-topolgy.
The regular or principal subspace, that is,

is an open dense subset for the D-topology.

The Principal and Singular Loci

The singular locus of the action of the solenoid is

$$
\operatorname{Sing}=\bigcup_{n \in Z} S_{n}^{1} \subset S_{\alpha}^{\infty}
$$

Equipped with the subset diffeology, it is the diffeological sum

$$
\operatorname{Sing}=\coprod_{n \in Z} S_{n}^{1}, \quad \text { and } \quad \operatorname{dim}(\operatorname{Sing})=1
$$

It is a closed subset for the D-topolgy.
The regular or principal subspace, that is,

$$
\mathcal{R e g}=S_{\alpha}^{\infty}-\bigcup_{n \in Z} S_{n}^{1},
$$

is an open dense subset for the D-topology.

Symplectic Reduction

Theorem. There exists a closed 2-form ϖ on $\mathrm{QP}_{\alpha}^{\infty}$ such that:

$$
\operatorname{pr}^{*}(\varpi)=\omega \upharpoonright S_{\alpha}^{\infty}
$$

> Note 1. Because of the singular orbits, the quasi projective space is not transitive under the local automorphisms, and therefore ϖ is not symplectic. I say parasymplectic. It would not be surprising if the universal moment map would be injective. That can be checked later on.

> Note 2. Considering the mechanism of the proof, it is clear that this situation is a special case of a more general theorem on reduction by R or S^{1} actions.

Symplectic Reduction

Theorem. There exists a closed 2-form ϖ on $\mathrm{QP}_{\alpha}^{\infty}$ such that:

$$
\operatorname{pr}^{*}(\varpi)=\omega \upharpoonright S_{\alpha}^{\infty}
$$

Note 1. Because of the singular orbits, the quasi projective space is not transitive under the local automorphisms, and therefore Φ is not symplectic. I say parasymplectic. It would not be surprising if the universal moment map would be injective. That can be checked later on.

Note 2. Considering the mechanism of the proof, it is clear that this situation is a special case of a more general theorem on reduction by R or S^{1} actions.

Symplectic Reduction

Theorem. There exists a closed 2-form \varnothing on $\mathrm{QP}_{\alpha}^{\infty}$ such that:

$$
\operatorname{pr}^{*}(\varpi)=\omega \upharpoonright S_{\alpha}^{\infty}
$$

Note 1. Because of the singular orbits, the quasi projective space is not transitive under the local automorphisms, and therefore ϖ is not symplectic. I say parasymplectic. It would not be surprising if the universal moment map would be injective. That can be checked later on.

Note 2. Considering the mechanism of the proof, it is clear that this situation is a special case of a more general theorem on reduction by \mathbf{R} or S^{1} actions

Symplectic Reduction

Theorem. There exists a closed 2-form ϖ on $\mathrm{QP}_{\alpha}^{\infty}$ such that:

$$
\operatorname{pr}^{*}(\varpi)=\omega \upharpoonright S_{\alpha}^{\infty} .
$$

Note 1. Because of the singular orbits, the quasi projective space is not transitive under the local automorphisms, and therefore ϖ is not symplectic. I say parasymplectic. It would not be surprising if the universal moment map would be injective. That can be checked later on.

Note 2. Considering the mechanism of the proof, it is clear that this situation is a special case of a more general theorem on reduction by \mathbf{R} or S^{1} actions.

Symplectic Reduction - Proof i/v

Proof We shall apply the general criterion for a differential form to be a pullback by a subduction.

Symplectic Reduction - Proof i/v

Proof We shall apply the general criterion for a differential form to be a pullback by a subduction.

Let $\mathrm{P}: \mathrm{U} \rightarrow \mathrm{S}_{\alpha}^{\infty}$ and $\mathrm{P}^{\prime}: \mathrm{U} \rightarrow \mathrm{S}_{\alpha}^{\infty}$ be two plots

$$
\left.\mathrm{U} \xrightarrow[\mathrm{P}^{\prime}]{\stackrel{\mathrm{P}}{\longrightarrow}}\right|_{\substack{\text { pr }}} ^{\mathrm{S}_{\alpha}^{\infty}} \text { such that } \quad \text { proP }=\text { proP } \mathrm{P}^{\prime} .
$$

We want to check if, in these conditions, $\omega(\mathrm{P})=\omega\left(\mathrm{P}^{\prime}\right)$?
mhat would :msume the aristence of a, a (necessamilu closed)
2 -form on $\mathrm{QP}_{\alpha}^{\infty}$ such that $\omega=\mathrm{pr}^{*}(\omega)$.

Symplectic Reduction — Proof i/v

Proof We shall apply the general criterion for a differential form to be a pullback by a subduction.

Let $\mathrm{P}: \mathrm{U} \rightarrow \mathrm{S}_{\alpha}^{\infty}$ and $\mathrm{P}^{\prime}: \mathrm{U} \rightarrow \mathrm{S}_{\alpha}^{\infty}$ be two plots

$$
\begin{aligned}
& \mathrm{U} \xrightarrow[\mathrm{P}^{\prime}]{\mathrm{P}}{ }^{\mathrm{P}}{ }^{\mathrm{pr}} \mathrm{~S}_{\alpha}^{\infty} \quad \text { such that } \quad \text { proP }=\text { proP }{ }^{\prime} . \\
& \mathrm{QP}_{\alpha}^{\infty}
\end{aligned}
$$

We want to check if, in these conditions, $\omega(\mathrm{P})=\omega\left(\mathrm{P}^{\prime}\right)$?
That would insure the existence of ϖ, a (necessarily closed) 2 -form on $\mathrm{QP}_{\alpha}^{\infty}$ such that $\omega=\operatorname{pr}^{*}(\omega)$.

Symplectic Reduction — Proof i/v

Proof We shall apply the general criterion for a differential form to be a pullback by a subduction.

Let $\mathrm{P}: \mathrm{U} \rightarrow \mathrm{S}_{\alpha}^{\infty}$ and $\mathrm{P}^{\prime}: \mathrm{U} \rightarrow \mathrm{S}_{\alpha}^{\infty}$ be two plots

$$
\left.\mathrm{U} \xrightarrow[\mathrm{P}^{\prime}]{\stackrel{\mathrm{P}}{\longrightarrow}}\right|_{\underset{\alpha}{\infty}} ^{\mathrm{S}_{\alpha}^{\infty}} \quad \text { such that } \quad \text { proP }=\mathrm{proP}^{\prime}
$$

We want to check if, in these conditions, $\omega(\mathrm{P})=\omega\left(\mathrm{P}^{\prime}\right)$?
That would insure the existence of \oplus, a (necessarily closed) 2-form on $\mathrm{QP}_{\alpha}^{\infty}$ such that $\omega=\operatorname{pr}^{*}(\varpi)$.

Symplectic Reduction - Proof ii/v

We consider first of all what happens on the open subset

$$
\mathrm{U}_{0}=\mathrm{P}^{-1}\left(\mathrm{~S}_{\alpha}^{\infty}-\operatorname{sing}\right)
$$

Since $\mathrm{S}_{\alpha}^{\infty}-$ Sing is a union of orbits and $\mathrm{pr} \circ \mathrm{P}=\mathrm{pr} \circ \mathrm{P}^{\prime}$,

Now, the restrictions of P and P^{\prime} on U_{0} take their values in the subset of $\mathrm{S} \infty$ made of muincinal owhits of \mathbf{D} for which the stabilizer of the action of R is $\{0\}$.

Thus, for each $r \in U_{0}$ there is a unique $\tau(r) \in R$ such that, for
$Z_{n}^{\prime}(r)=e^{2 i \pi \alpha_{n} \tau(r)} Z_{n}(r)$.

Symplectic Reduction - Proof ii/v

We consider first of all what happens on the open subset

$$
\mathrm{U}_{0}=\mathrm{P}^{-1}\left(\mathrm{~S}_{\alpha}^{\infty}-\text { Sing }\right)
$$

Since $\mathrm{S}_{\alpha}^{\infty}-$ Sing is a union of orbits and $\mathrm{pr} \circ \mathrm{P}=\mathrm{pr} \circ \mathrm{P}^{\prime}$, $\mathrm{P}^{-1}\left(\mathrm{~S}_{\alpha}^{\infty}-\right.$ Sing $)=\mathrm{P}^{\prime-1}\left(\mathrm{~S}_{\alpha}^{\infty}-\right.$ Sing $)=\mathrm{U}_{0}$.

Now, the restrictions of P and P^{\prime} on U_{0} take their values in the subset of $\mathrm{S}_{\alpha}^{\infty}$ made of principal orbits of \mathbf{R}, for which the stabilizer of the action of \mathbf{R} is $\{0\}$,

Thus, for each $r \in U_{0}$ there is a unique $\tau(r) \in R$ such that, for all n,
$Z_{n}^{\prime}(r)=e^{2 i \pi \alpha_{n} \tau(r)} Z_{n}(r)$.

Symplectic Reduction - Proof ii/v

We consider first of all what happens on the open subset

$$
\mathrm{U}_{0}=\mathrm{P}^{-1}\left(\mathrm{~S}_{\alpha}^{\infty}-\text { Sing }\right)
$$

Since $S_{\alpha}^{\infty}-$ Sing is a union of orbits and $\operatorname{pr} \circ \mathrm{P}=\mathrm{pr} \circ \mathrm{P}^{\prime}$, $\mathrm{P}^{-1}\left(\mathrm{~S}_{\alpha}^{\infty}-\right.$ Sing $)=\mathrm{P}^{\prime-1}\left(\mathrm{~S}_{\alpha}^{\infty}-\right.$ Sing $)=\mathrm{U}_{0}$.

Now, the restrictions of P and P^{\prime} on U_{0} take their values in the subset of $\mathrm{S}_{\alpha}^{\infty}$ made of principal orbits of \mathbf{R}, for which the stabilizer of the action of \mathbf{R} is $\{0\}$.

Thus, for each $r \in U_{0}$ there is a unique $\tau(r) \in R$ such that, for all n,

Symplectic Reduction - Proof ii/v

We consider first of all what happens on the open subset

$$
\mathrm{U}_{0}=\mathrm{P}^{-1}\left(\mathrm{~S}_{\alpha}^{\infty}-\text { sing }\right)
$$

Since $\mathrm{S}_{\alpha}^{\infty}-$ Sing is a union of orbits and $\mathrm{pr} \circ \mathrm{P}=\mathrm{pr} \circ \mathrm{P}^{\prime}$, $\mathrm{P}^{-1}\left(\mathrm{~S}_{\alpha}^{\infty}-\right.$ Sing $)=\mathrm{P}^{\prime-1}\left(\mathrm{~S}_{\alpha}^{\infty}-\right.$ Sing $)=\mathrm{U}_{0}$.

Now, the restrictions of P and P^{\prime} on U_{0} take their values in the subset of $\mathrm{S}_{\alpha}^{\infty}$ made of principal orbits of \mathbf{R}, for which the stabilizer of the action of \mathbf{R} is $\{0\}$.

Thus, for each $r \in U_{0}$ there is a unique $\tau(r) \in \mathbf{R}$ such that, for all n,

$$
Z_{n}^{\prime}(r)=e^{2 i \pi \alpha_{n} \tau(r)} Z_{n}(r)
$$

Symplectic Reduction - Proof iii/v

The function τ is smooth. Indeed, for all $r_{0} \in U_{0}$, there exists $n \in \mathbf{Z}$ such that $Z_{n}\left(r_{0}\right) \neq 0$.

Then there exists a neighborhood of r_{0} where $Z_{n}(r) \neq 0$.
Hence, on this neighborhood:

But $r \mapsto Z_{n}^{\prime}(r)$ and $r \mapsto Z_{n}(r)$ are smooth, thus $r \mapsto e^{2 i \pi \alpha_{n} \tau(r)}$ is smooth, and therefore so is τ; because $\iota: \mathbf{R} \mapsto \mathrm{T}^{\infty}$, such that $S_{\alpha}=\iota(\mathrm{R})$, is an induction.

Symplectic Reduction - Proof iii/v

The function τ is smooth. Indeed, for all $r_{0} \in U_{0}$, there exists $n \in \mathbf{Z}$ such that $Z_{n}\left(r_{0}\right) \neq 0$.

Then there exists a neighborhood of r_{0} where $Z_{n}(r) \neq 0$.
Hence, on this neighborhood:

But $r \mapsto Z_{n}^{\prime}(r)$ and $r \mapsto Z_{n}(r)$ are smooth, thus $r \mapsto e^{2 i \pi \alpha_{n} \tau(r)}$ is smooth, and therefore so is τ; because $\iota: \mathbf{R} \mapsto T^{\infty}$, such that $S_{\alpha}=\iota(\mathrm{R})$, is an induction.

Symplectic Reduction — Proof iii/v

The function τ is smooth. Indeed, for all $r_{0} \in U_{0}$, there exists $n \in \mathbf{Z}$ such that $Z_{n}\left(r_{0}\right) \neq 0$.

Then there exists a neighborhood of r_{0} where $Z_{n}(r) \neq 0$.
Hence, on this neighborhood:

$$
e^{2 i \pi \alpha_{n} \tau(r)}=\frac{Z_{n}^{\prime}(r)}{Z_{n}(r)}
$$

But $r \mapsto Z_{n}^{\prime}(r)$ and $r \mapsto Z_{n}(r)$ are smooth, thus $r \mapsto e^{2 i \pi \alpha_{n} \tau(r)}$ is smooth, and therefore so is τ; because $\iota: \mathbf{R} \mapsto T^{\infty}$, such that $\mathcal{S}_{\alpha}=\iota(\mathbf{R})$, is an induction.

Symplectic Reduction - Proof iii/v

The function τ is smooth. Indeed, for all $r_{0} \in U_{0}$, there exists $n \in \mathbf{Z}$ such that $Z_{n}\left(r_{0}\right) \neq 0$.

Then there exists a neighborhood of r_{0} where $Z_{n}(r) \neq 0$.
Hence, on this neighborhood:

$$
e^{2 i \pi \alpha_{n} \tau(r)}=\frac{Z_{n}^{\prime}(r)}{Z_{n}(r)}
$$

But $r \mapsto Z_{n}^{\prime}(r)$ and $r \mapsto Z_{n}(r)$ are smooth, thus $r \mapsto e^{2 i \pi \alpha_{n} \tau(r)}$ is smooth, and therefore so is τ; because $\iota: \mathbf{R} \mapsto T^{\infty}$, such that $\mathcal{S}_{\alpha}=\iota(\mathbf{R})$, is an induction.

Symplectic Reduction - Proof iv/v

Now, $\omega=\mathrm{d} \varepsilon$, and

$$
\begin{aligned}
\varepsilon\left(P^{\prime}\right)_{r}(\delta r) & =\frac{1}{2 i \pi} \sum_{n \in Z} \overline{Z_{n}^{\prime}(r)} \frac{\partial Z_{n}^{\prime}(r)}{\partial r}(\delta r) \\
& =\frac{1}{2 i \pi} \sum_{n \in Z} \overline{Z_{n}(r)} \frac{\partial Z_{n}(r)}{\partial r}(\delta r) \\
& +\left(\sum_{n \in Z} \alpha_{n} \overline{Z_{n}(r)} Z_{n}(r)\right) \frac{\partial \tau(r)}{\partial r}(\delta r) \\
& =\varepsilon(P)_{r}(\delta r)+\tau^{*}(d t)_{r}(\delta r)
\end{aligned}
$$

Symplectic Reduction - Proof iv/v

Now, $\omega=\mathrm{d} \varepsilon$, and

$$
\begin{aligned}
\varepsilon\left(P^{\prime}\right)_{r}(\delta r) & =\frac{1}{2 i \pi} \sum_{n \in Z} \overline{Z_{n}^{\prime}(r)} \frac{\partial Z_{n}^{\prime}(r)}{\partial r}(\delta r) \\
& =\frac{1}{2 i \pi} \sum_{n \in Z} \overline{Z_{n}(r)} \frac{\partial Z_{n}(r)}{\partial r}(\delta r) \\
& +\left(\sum_{n \in Z} \alpha_{n} \overline{Z_{n}(r)} Z_{n}(r)\right) \frac{\partial \tau(r)}{\partial r}(\delta r) \\
& =\varepsilon(P)_{r}(\delta r)+\tau^{*}(d t)_{r}(\delta r)
\end{aligned}
$$

Therefore, since $d\left[\tau^{*}(d t)\right]=0$, restricted to $U_{0}, d \varepsilon\left(P^{\prime}\right)=d \varepsilon(P)$. That is, $\left[\omega\left(\mathrm{P}^{\prime}\right)-\omega(\mathrm{P})\right] \upharpoonright \mathrm{U}_{0}=0$.

Symplectic Reduction - Proof v/v

Thus, by continuity, $\left[\omega\left(\mathrm{P}^{\prime}\right)-\omega(\mathrm{P})\right] \upharpoonright \overline{\mathrm{U}}_{0}=0$, where $\overline{\mathrm{U}}_{0}$ is the closure of U_{0}. It remains to check what happens on the complementary $\mathrm{V}=\mathrm{U}-\overline{\mathrm{U}}_{0}$.

The subset V is open, thus $\mathrm{P} \upharpoonright \mathrm{V}$ and $\mathrm{P}^{\prime} \upharpoonright \mathrm{V}$ are two plots of
S_{α}^{∞} with values in the subset of singular orbits Sing.
But Sinc hac dimencion 1 and w is a 2 form thres:
$\omega(\mathrm{P} \upharpoonright \mathrm{V})=\omega\left(\mathrm{P}^{\prime} \upharpoonright \mathrm{V}\right)=0$. This is a general fact also true in
diffeology.
In conclutsion, $\omega\left(P^{\prime}\right)=\omega(P)$ everywhere on U. That proves that there exists a (closed) 2-form ω on $\mathrm{QP}_{\alpha}^{\infty}=\mathrm{S}_{\alpha}^{\infty} / \mathrm{R}$ such that $\mathrm{pr}^{*}(\Phi)=\omega$.

Symplectic Reduction - Proof v/v

Thus, by continuity, $\left[\omega\left(\mathrm{P}^{\prime}\right)-\omega(\mathrm{P})\right] \upharpoonright \overline{\mathrm{U}}_{0}=0$, where $\overline{\mathrm{U}}_{0}$ is the closure of U_{0}. It remains to check what happens on the complementary $\mathrm{V}=\mathrm{U}-\overline{\mathrm{U}}_{0}$.

The subset V is open, thus $\mathrm{P} \upharpoonright \mathrm{V}$ and $\mathrm{P}^{\prime} \upharpoonright \mathrm{V}$ are two plots of $\mathrm{S}_{\alpha}^{\infty}$ with values in the subset of singular orbits Sing.

But Sing has dimension 1 and ω is a 2 -form, thus:
$\omega(\mathrm{P} \upharpoonright \mathrm{V})=\omega\left(\mathrm{P}^{\prime} \upharpoonright \mathrm{V}\right)=0$. This is a general fact also true in
diffeology.
In conclusion, $\omega\left(\mathrm{P}^{\prime}\right)=\omega(\mathrm{P})$ everywhere on U . That proves that there exists a (closed) 2-form ω on $\mathrm{QP}_{\alpha}^{\infty}=\mathrm{S}_{\alpha}^{\infty} / \mathrm{R}$ such that $\mathrm{pr}^{*}(\boldsymbol{\omega})=\omega$.

Symplectic Reduction - Proof v/v

Thus, by continuity, $\left[\omega\left(\mathrm{P}^{\prime}\right)-\omega(\mathrm{P})\right] \upharpoonright \overline{\mathrm{U}}_{0}=0$, where $\overline{\mathrm{U}}_{0}$ is the closure of U_{0}. It remains to check what happens on the complementary $\mathrm{V}=\mathrm{U}-\overline{\mathrm{U}}_{0}$.

The subset V is open, thus $\mathrm{P} \upharpoonright \mathrm{V}$ and $\mathrm{P}^{\prime} \upharpoonright \mathrm{V}$ are two plots of S_{α}^{∞} with values in the subset of singular orbits Sing.

But Sing has dimension 1 and ω is a 2-form, thus: $\omega(\mathrm{P} \upharpoonright \mathrm{V})=\omega\left(\mathrm{P}^{\prime} \upharpoonright \mathrm{V}\right)=0$. This is a general fact also true in diffeology.

In conclusion, $\omega\left(\mathrm{P}^{\prime}\right)=\omega(\mathrm{P})$ everywhere on U. That proves that there exists a (closed) 2 -form ∞ on $\mathrm{QP}_{\alpha}^{\infty}=\mathrm{S}_{\alpha}^{\infty} / \mathrm{R}$ such that nn* $(\infty)=\cdots$

Symplectic Reduction - Proof v/v

Thus, by continuity, $\left[\omega\left(\mathrm{P}^{\prime}\right)-\omega(\mathrm{P})\right] \upharpoonright \overline{\mathrm{U}}_{0}=0$, where $\overline{\mathrm{U}}_{0}$ is the closure of U_{0}. It remains to check what happens on the complementary $\mathrm{V}=\mathrm{U}-\overline{\mathrm{U}}_{0}$.

The subset V is open, thus $\mathrm{P} \upharpoonright \mathrm{V}$ and $\mathrm{P}^{\prime} \upharpoonright \mathrm{V}$ are two plots of S_{α}^{∞} with values in the subset of singular orbits Sing.

But Sing has dimension 1 and ω is a 2-form, thus: $\omega(\mathrm{P} \upharpoonright \mathrm{V})=\omega\left(\mathrm{P}^{\prime} \upharpoonright \mathrm{V}\right)=0$. This is a general fact also true in diffeology.

In conclusion, $\omega\left(\mathrm{P}^{\prime}\right)=\omega(\mathrm{P})$ everywhere on U . That proves that there exists a (closed) 2-form ϖ on $\mathrm{QP}_{\alpha}^{\infty}=\mathrm{S}_{\alpha}^{\infty} / \mathbf{R}$ such that $\operatorname{pr}^{*}(\bowtie)=\omega$.

Conclusion

In conclusion: the symplectic reduction of the Hamiltonian level of the action of the infinite solenoid on the infinite α-ellipsoid could be completed despite the infinite dimension of the spaces involved and the presence of singularities. This was made possible by the flexibility of the diffeology framework, without the need to introduce ad hoc heuristics. Only by using legitimate standard constructions of the diffeological framework.

Diffeology offers a unified framework for symplectic reduction with or without singularities in finite or infinite dimension.
m1. is what T wanted to show in in is tank.

Conclusion

In conclusion: the symplectic reduction of the Hamiltonian level of the action of the infinite solenoid on the infinite α-ellipsoid could be completed despite the infinite dimension of the spaces involved and the presence of singularities. This was made possible by the flexibility of the diffeology framework, without the need to introduce ad hoc heuristics. Only by using legitimate standard constructions of the diffeological framework.

Diffeology offers a unified framework for symplectic reduction with or without singularities in finite or infinite dimension.

This is what I wanted to show in this talk.

Conclusion

In conclusion: the symplectic reduction of the Hamiltonian level of the action of the infinite solenoid on the infinite α-ellipsoid could be completed despite the infinite dimension of the spaces involved and the presence of singularities. This was made possible by the flexibility of the diffeology framework, without the need to introduce ad hoc heuristics. Only by using legitimate standard constructions of the diffeological framework.

Diffeology offers a unified framework for symplectic reduction with or without singularities in finite or infinite dimension.

This is what I wanted to show in this talk.

The Actors of the Play

- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.
- ω - The projection of ω on $\varepsilon \sim C_{\text {per }}^{\infty}(R, C)$.
- T^{∞} - The infinite torus acting on \mathcal{E} by multiplication.
- $T^{\infty *}$ - The space of momenta of T^{∞}.
- $\mu: \varepsilon \rightarrow T^{\infty *}$ - The moment map of T^{∞} acting on \mathcal{E}.
- $\alpha=\left(\alpha_{n}\right)_{n \in Z}$ - A series of \mathbf{Q}-independent real numbers.
- $S_{\alpha} \subset T^{\infty}$ - The α-irrational solenoid, induced by \mathbf{R}.
- $h: \mathcal{E} \rightarrow \mathrm{R}$ - The Hamiltonian of \mathcal{S}_{α}, projection of μ on R .
- S_{α}^{∞} - The infinite α-ellipsoid, level of the Hamiltonian h.
- $\mathrm{QP}_{\alpha}^{\infty}$ - The quasi-projective space $\mathrm{S}_{\alpha}^{\infty} / \mathrm{R}$.
- ω - The reduction of $\omega \mid S_{\alpha}^{\infty}$ on $\mathrm{QP}_{\alpha}^{\infty}$.

The Actors of the Play

- $\mathrm{C}_{\mathrm{per}}^{\infty}(\mathrm{R}, \mathrm{C})$ - The space of complex periodic functions.

The Actors of the Play

- $C_{\text {per }}^{\infty}(R, C)$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
The space of rapidly decreasing complex series
The projection of ω on $\mathcal{E} \sim C_{\text {per }}^{\infty}(R, C)$
The infinite torus acting on \mathcal{E} bv multiolication.The space of momenta of T^{∞}- $\mu: \mathcal{E} \rightarrow T^{\infty *}$ - The moment map of T^{∞} acting on \mathcal{E}.- $\alpha=\left(\alpha_{m}\right)_{n-7}$ - A series of $O_{\text {-indenendent real numbers }}$- $S_{\alpha} \subset T^{\infty}$ - The α-irrational solenoid, induced by R
- $h: \mathcal{E} \rightarrow \mathbf{R}$ - The Hamiltonian of \mathcal{S}_{α}, projection of μ on \mathbf{R}- S^{∞} - The infinite α-ellinsoid level of the Hamiltonian h.- $\mathrm{QP}_{\alpha}^{\infty}$ - The quasi-projective space $\mathrm{S}_{\alpha}^{\infty} / \mathrm{R}$.
- ω - The reduction of $\omega \upharpoonright \mathrm{S}_{\alpha}^{\infty}$ on $\mathrm{QP}_{\alpha}^{\infty}$

The Actors of the Play

- $C_{\text {per }}^{\infty}(R, C)$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.

The Actors of the Play

- $C_{\text {per }}^{\infty}(R, C)$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.
- ω - The projection of ω on $\mathcal{E} \sim C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.

The Actors of the Play

- $C_{\text {per }}^{\infty}(R, C)$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.
- ω - The projection of ω on $\mathcal{E} \sim C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- T^{∞} - The infinite torus acting on \mathcal{E} by multiplication.
\square
- $\mathrm{QP}_{\alpha}^{\infty}$ - The quasi-projective space $\mathrm{S}_{\sim}^{\infty} / \mathrm{R}$.

The Actors of the Play

- $\mathrm{C}_{\text {per }}^{\infty}(\mathrm{R}, \mathrm{C})$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.
- ω - The projection of ω on $\mathcal{E} \sim C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- T^{∞} - The infinite torus acting on \mathcal{E} by multiplication.
- $\mathrm{T}^{\infty *}$ - The space of momenta of T^{∞}.

The Actors of the Play

- $C_{\text {per }}^{\infty}(R, C)$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.
- ω - The projection of ω on $\mathcal{E} \sim C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- T^{∞} - The infinite torus acting on \mathcal{E} by multiplication.
- $\mathrm{T}^{\infty *}$ - The space of momenta of T^{∞}.
- $\mu: \mathcal{E} \rightarrow \mathrm{T}^{\infty *}$ - The moment map of T^{∞} acting on \mathcal{E}.

The Actors of the Play

- $\mathrm{C}_{\mathrm{per}}^{\infty}(\mathbf{R}, \mathrm{C})$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.
- ω - The projection of ω on $\mathcal{E} \sim C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- T^{∞} - The infinite torus acting on \mathcal{E} by multiplication.
- $\mathrm{T}^{\infty *}$ - The space of momenta of T^{∞}.
- $\mu: \mathcal{E} \rightarrow \mathrm{T}^{\infty *}$ - The moment map of T^{∞} acting on \mathcal{E}.
- $\alpha=\left(\alpha_{n}\right)_{n \in \mathbf{Z}}$ - A series of \mathbf{Q}-independent real numbers.
- $h: \mathcal{E} \rightarrow \mathrm{R}$ - The Hamiltonian of \mathcal{S}_{α}, projection of μ on \mathbf{R}.

The infinite α-ellipsoid, level of the Hamiltonian h.
The quasi-projective space S_{α}^{∞} / R.

- ω - The reduction of $\omega \upharpoonright \mathrm{S}_{\alpha}^{\infty}$ on $\mathrm{QP}_{\alpha}^{\infty}$

The Actors of the Play

- $\mathrm{C}_{\mathrm{per}}^{\infty}(\mathbf{R}, \mathrm{C})$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.
- ω - The projection of ω on $\mathcal{E} \sim C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- T^{∞} - The infinite torus acting on \mathcal{E} by multiplication.
- $\mathrm{T}^{\infty *}$ - The space of momenta of T^{∞}.
- $\mu: \mathcal{E} \rightarrow \mathrm{T}^{\infty *}$ - The moment map of T^{∞} acting on \mathcal{E}.
- $\alpha=\left(\alpha_{n}\right)_{n \in Z}$ - A series of \mathbf{Q}-independent real numbers.
- $\mathcal{S}_{\alpha} \subset \mathrm{T}^{\infty}$ - The α-irrational solenoid, induced by \mathbf{R}.
- S_{α}^{∞} - The infinite α-ellipsoid, level of the Hamiltonian h.
- $\mathrm{QP}_{\sim}^{\infty}$ - The quasi-projective space $\mathrm{S}_{\sim}^{\infty} / \mathrm{R}$.
- ω - The reduction of $\omega \upharpoonright \mathrm{S}_{\alpha}^{\infty}$ on $\mathrm{QP}_{\alpha}^{\infty}$

The Actors of the Play

- $\mathrm{C}_{\mathrm{per}}^{\infty}(\mathbf{R}, \mathrm{C})$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.
- ω - The projection of ω on $\mathcal{E} \sim C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- T^{∞} - The infinite torus acting on \mathcal{E} by multiplication.
- $\mathrm{T}^{\infty *}$ - The space of momenta of T^{∞}.
- $\mu: \mathcal{E} \rightarrow \mathrm{T}^{\infty *}$ - The moment map of T^{∞} acting on \mathcal{E}.
- $\alpha=\left(\alpha_{n}\right)_{n \in Z}$ - A series of \mathbf{Q}-independent real numbers.
- $\mathcal{S}_{\alpha} \subset \mathrm{T}^{\infty}$ - The α-irrational solenoid, induced by \mathbf{R}.
- $h: \mathcal{E} \rightarrow \mathbf{R}$ - The Hamiltonian of \mathcal{S}_{α}, projection of μ on \mathbf{R}.

The Actors of the Play

- $C_{\text {per }}^{\infty}(R, C)$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.
- ω - The projection of ω on $\mathcal{E} \sim C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- T^{∞} - The infinite torus acting on \mathcal{E} by multiplication.
- $\mathrm{T}^{\infty *}$ - The space of momenta of T^{∞}.
- $\mu: \mathcal{E} \rightarrow \mathrm{T}^{\infty *}$ - The moment map of T^{∞} acting on \mathcal{E}.
- $\alpha=\left(\alpha_{n}\right)_{n \in Z}$ - A series of \mathbf{Q}-independent real numbers.
- $\mathcal{S}_{\alpha} \subset \mathrm{T}^{\infty}$ - The α-irrational solenoid, induced by \mathbf{R}.
- $h: \mathcal{E} \rightarrow \mathbf{R}$ - The Hamiltonian of \mathcal{S}_{α}, projection of μ on \mathbf{R}.
- S_{α}^{∞} - The infinite α-ellipsoid, level of the Hamiltonian h.

The Actors of the Play

- $C_{\text {per }}^{\infty}(R, C)$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.
- ω - The projection of ω on $\mathcal{E} \sim C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- T^{∞} - The infinite torus acting on \mathcal{E} by multiplication.
- $\mathrm{T}^{\infty *}$ - The space of momenta of T^{∞}.
- $\mu: \mathcal{\varepsilon} \rightarrow \mathrm{T}^{\infty *}$ - The moment map of T^{∞} acting on \mathcal{E}.
- $\alpha=\left(\alpha_{n}\right)_{n \in Z}$ - A series of \mathbf{Q}-independent real numbers.
- $\mathcal{S}_{\alpha} \subset \mathrm{T}^{\infty}$ - The α-irrational solenoid, induced by \mathbf{R}.
- $h: \mathcal{E} \rightarrow \mathbf{R}$ - The Hamiltonian of \mathcal{S}_{α}, projection of μ on \mathbf{R}.
- S_{α}^{∞} - The infinite α-ellipsoid, level of the Hamiltonian h.
- $\mathrm{QP}_{\alpha}^{\infty}$ - The quasi-projective space $\mathrm{S}_{\alpha}^{\infty} / \mathbf{R}$.

The Actors of the Play

- $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$ - The space of complex periodic functions.
- ω - The symplectic form on $C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- \mathcal{E} - The space of rapidly decreasing complex series.
- ω - The projection of ω on $\mathcal{E} \sim C_{\text {per }}^{\infty}(\mathbf{R}, \mathbf{C})$.
- T^{∞} - The infinite torus acting on \mathcal{E} by multiplication.
- $\mathrm{T}^{\infty *}$ - The space of momenta of T^{∞}.
- $\mu: \mathcal{E} \rightarrow \mathrm{T}^{\infty *}$ - The moment map of T^{∞} acting on \mathcal{E}.
- $\alpha=\left(\alpha_{n}\right)_{n \in Z}$ - A series of \mathbf{Q}-independent real numbers.
- $\mathcal{S}_{\alpha} \subset \mathrm{T}^{\infty}$ - The α-irrational solenoid, induced by \mathbf{R}.
- $h: \mathcal{E} \rightarrow \mathbf{R}$ - The Hamiltonian of \mathcal{S}_{α}, projection of μ on \mathbf{R}.
- S_{α}^{∞} - The infinite α-ellipsoid, level of the Hamiltonian h.
- $\mathrm{QP}_{\alpha}^{\infty}$ - The quasi-projective space $\mathrm{S}_{\alpha}^{\infty} / \mathbf{R}$.
- ϖ - The reduction of $\omega \upharpoonright \mathrm{S}_{\alpha}^{\infty}$ on $\mathrm{QP}_{\alpha}^{\infty}$.

Revised Reprint by Beijing WPC（2022）

Patrick Iglesias－Zemmour

Diffeology

广义微分几何

［法］拍恃里克•伊格莱西亚斯－泽楾尔 書

AMS
https：／／eastred．jp／ja－285869－9787519296087

References i

[PIZ10] Patrick Iglesias-Zemmour, Moment Maps in Diffeology. Memoir of the AMS, vol. 192. Am. Math. Soc., Providence RI, (2010).
[PIZ13] Diffeology. Mathematical Surveys and Monographs, vol. 185. Am. Math. Soc., Providence RI, (2013).
[PIZ22] Diffeology. Revised reprint by Beijing World Publication Corp. Beijing, (2022).
https://eastred.jp/ja-285869-9787519296087
[PIZ16] Example of singular reduction in symplectic diffeology. Proc. Amer. Math. Soc., 144(2):1309-1324 (2016).
[EP01] Elisa Prato, Simple Non-Rational Convex Polytopes via Symplectic Geometry. Topology, 40 (2001), pp. 961-975.
[Sou70] Jean-Marie Souriau. Structure des systèmes dynamiques, Dunod, Paris 1970.
[MW74] Jerrold Marsden and Alan Weinstein. Reduction of Symplectic Manifolds with Symmetry, Rep. Math. Phys. 5 (1974), pp. 121—130.

Thank you!

[^0]: "In "Lectures on diffeology", Beijing WPC, 2024 (to appear)

[^1]: ${ }^{1}$ In "Lectures on diffeology", Beijing WPC, 2024 (to appear).

